Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I

Abstract

Spinocerebellar ataxia type I (SCAI) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat on chromosome 6p. Normal alleles range from 19–36 repeats while SCA1 alleles contain 43–81 repeats. We now show that in 63% of paternal transmissions, an increase in repeat number is observed, whereas 69% of maternal transmissions showed no change or a decrease in repeat number. Sequence analysis of the repeat from 126 chromosomes reveals an interrupted repeat configuration in 98% of the unexpanded alleles but a contiguous repeat (CAG)n configuration in 30 expanded alleles from seven SCA1 families. This indicates that the repeat instability in SCA1 is more complex than a simple variation in repeat number and that the loss of an interruption predisposes the SCA1 (CAG)n to expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schut, J.W. Hereditary ataxia: clincal study through six generations. Arch. Neur. Psychiat. 63, 535–567 (1954).

    Article  Google Scholar 

  2. Currier, R.D., Glover, G., Jackson, J.F. & Tipton, A.C. Spinocerebellar ataxia: study of a large kindred. Neurology 22, 1040–1043 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Nino, H.E. et al. A family with herediatary ataxia: HLA typing. Neurology 30, 12–20 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Zoghbi, H.Y. et al. Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann. Neurol. 23, 580–584 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Konigsmark, B.W. & Weiner, L.P. The olivopontocerebellar atrophies: a review. Medicine 49, 227–241 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Haines, J.L. et al. Spinocerebellar ataxia in a large kindred: age at onset, reproduction, and genetic linkage studies. Neurology 34, 1542–1548 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Yakura, H., Wakisaka, A., Fujimoto, S. & Itakur, K. Hereditary ataxia and HLA genotypes. New Engl. J. Med. 291, 154–155 (1974).

    CAS  PubMed  Google Scholar 

  8. Morton, N.E., Lalouel, J.-M., Jackson, J.F., Currier, R.D. & Yee, S. Linkage studies in spinocerebellar ataxia (SCA). Am. J. med. Genet. 6, 251–257 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Pederson, L., Platz, P., Ryder, L.P., Lamm, L.U. & Dissing, J. A linkage study of hereditary ataxias and related disorders: evidence of heterogeneity of dominant cerebellar ataxia. Hum. Genet. 54, 371–383 (1980).

    Article  Google Scholar 

  10. Whittington, J.E., Keats, B.B. & Jackson, J.F. Linkage studies of glyoxalase (GLO), pepsinogen (PG), spinocerebellar ataxia (SCA1), and HLA. Cytogenet. Cell Genet. 28, 145–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Ranum, L.P.W. et al. Localization of the autosomal dominant, HLA-linked spinocerebellar ataxia (SCA1) locus in two kindreds within an 8cM subregion of chromosome 6p. Am. J. hum. Genet. 49, 31–41 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zoghbi, H.Y. et al. Assignment of autosomal dominant spinocerebellar ataxia (SCA1) centromeric to the HLA region on the short arm of chromosome 6, using multilocus linkage analysis. Am. J. hum. Genet. 49, 23–30 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwiatkowski, T.J. Jr. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps centromeric to D6S89 and shows no recombination, in nine large kindreds, with a dinucleotide repeat at the AM10 locus. Am. J. hum. Genet. 53, 391–400 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Banfi, S. et al. Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene in a yeast artificial chromosome contig spanning 1.2 Mb. (in the press).

  15. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's Disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  17. LaSpada, A.R. et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular dystrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  18. Brook, J.D. et al. Molecular basis of myotonic dystrophy. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked and bulbar muscular dystrophy. Nature Genet. 2, 301–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Sleddens, H.F.B.M., Oostra, B.A., Brinkmann, A.O. & Trapman, Trinucleotide repeat polymorphism in the androgen receptor gene (AR). Nucl. Acids Res. 20, 1427 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gostout, B., Liu, Q. & Sommer, S.S. “Cryptic” repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am. J. hum. Genet. 52, 1182–1190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kremer, E.J. et al. Mapping of DNA instability at the Fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in Fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, My., Ranum, L., Duvick, L. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5, 254–258 (1993). https://doi.org/10.1038/ng1193-254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing