Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning

Abstract

Defects in nucleotide excision repair are associated with the human condition xeroderma pigmentosum which predisposes to skin cancer. Mice with defective DNA repair were generated by targeting the excision repair cross complementing gene (ERCC–1) in the embryonic stem cell line, HM–1. Homozygous ERCC–1 mutants were runted at birth and died before weaning with liver failure. Examination of organs revealed polyploidy in perinatal liver, progressing to severe aneuploidy by 3 weeks of age. Elevated p53 levels were detected in liver, brain and kidney, supporting the hypothesised role for p53 as a monitor of DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedberg, E.C. in DNA repair (W.H. Freeman, San Francisco, 1985).

    Google Scholar 

  2. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  3. Weeda, G., Hoeijmakers, J.H.J. & Bootsma, D. Genes controlling nucleotide excision repair in eukaryotic cells. BioEssays 15, 249–258 (1993).

    Article  CAS  Google Scholar 

  4. Collins, A.R.S. Mutant rodent cell lines sensitive to UV ionizing radiation and cross linking agents: a comprehensive survey of genetic and biochemical characteristics. Mut. Res. DNA repair 293, 99–118 (1993).

    Article  CAS  Google Scholar 

  5. Busch, D. et al. Summary of complementation groups of uv-sensitive CHO cell mutants isolated by large scale screening. Mutagenesis 4, 349–354 (1989).

    Article  CAS  Google Scholar 

  6. Cleaver, J.E. & Kraemer, K.H. in The Metabolic Basis of Inherited Disease Vol. 2 (eds Scriver, C.R. et al.) 2949–2971 (McGraw Hill, New York, 1989).

    Google Scholar 

  7. Flejter, W.L., McDaniel, L.D., Johns, D., Friedberg, E.C. & Schultz, R.A. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene. Proc. natn. Acad. Sci. U.S.A. 89, 261–265 (1992).

    Article  CAS  Google Scholar 

  8. Weeda, G. et al. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62, 777–791 (1990).

    Article  CAS  Google Scholar 

  9. O'Donovan, A. & Wood, R.D. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature 363, 185–188 (1993).

    Article  CAS  Google Scholar 

  10. Troelstra, C., Van Gool, A., de Wit, J., Vermeulen, W. & Hoeijmakers, J.H.J. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).

    Article  CAS  Google Scholar 

  11. Biggerstaff, M., Szymowski, D.E. & Wood, R.D. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12, 3685–3692 (1993).

    Article  CAS  Google Scholar 

  12. Westerveld, A. et al. Molecular cloning of a human DNA repair gene. Nature 310, 425–429 (1984).

    Article  CAS  Google Scholar 

  13. van Duin, M. et al. The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. Mutat. Res. 217, 83–92 (1989).

    Article  CAS  Google Scholar 

  14. van Duin, M. et al. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1. Nucl. Acids Res. 16, 5305–5322 (1988).

    Article  CAS  Google Scholar 

  15. Biggerstaff, M. & Wood, R.D. Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro: complementation using rodent and human cell extracts. J. biol. Chem. 267, 6879–6885 (1992).

    CAS  Google Scholar 

  16. Schiestl, R.H. & Prakash, S.A. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Molec. Cell. Biol. 10, 2485–2491 (1990).

    Article  CAS  Google Scholar 

  17. Tomkinson, A.E., Bardwell, A.J., Bardwell, L., Tappe, N.J. & Friedberg, E.C. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 362, 860–862 (1993).

    Article  CAS  Google Scholar 

  18. Belt, P.B.G.M., Van Oosterwijk, M.F., Odijk, H., Hoeijmakers, J.H.J. & Backendorf, C. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene. Nucl. Acids Res. 19, 5633–5637 (1991).

    Article  CAS  Google Scholar 

  19. Gulyas, K.D. & Donahue, T.F. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69, 1031–1042 (1992).

    Article  CAS  Google Scholar 

  20. Schaeffer, L.S. et al. DNA repair helicase: a component of BTF2(TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    Article  CAS  Google Scholar 

  21. Mitchell, D.L. & Hartman, P.S. The regulation of DNA repair during development. BioEssays 12, 74–79 (1990).

    Article  CAS  Google Scholar 

  22. Vogelstein, B. & Kinzler, K.W. p53 function and dysfunction. Cell 70, 523–526 (1992).

    Article  CAS  Google Scholar 

  23. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  Google Scholar 

  24. Lane, D.P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  Google Scholar 

  25. Selfridge, J., Pow, A.M., McWhir, J., Magin, T.M. & Melton, D.W. Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: Inactivation of the mouse ERCC-1 gene. Som. Cell molec. Genet. 18, 325–336 (1992).

    Article  CAS  Google Scholar 

  26. Regan, J.D. et al. Cyclobutane—pyrimidine dimer excision in UV-sensitive CHO mutants and the effect of the ERCC2 repair gene. Mut. Res. 235, 157–160 (1990).

    Article  CAS  Google Scholar 

  27. Squires, S., Johnson, R.T. & Collins, A.R.S. Initial rates of DNA incision in UV-irradiated human cells. Differences between normal, XP and tumour cells. Mut Res. 95, 389–404 (1982).

    Article  CAS  Google Scholar 

  28. van Duin, M. et al. Genomic characterisation of the human DNA excision repair gene ERCC-1. Nucl. Acids Res. 15, 9195–9213 (1987).

    Article  CAS  Google Scholar 

  29. Midgley, C.A. et al. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J. cell Sci. 101, 183–189 (1992).

    CAS  PubMed  Google Scholar 

  30. Sancar, A. & Sancar, G.B. DNA repair enzymes. A. Rev. Biochem. 57, 29–67 (1988).

    Article  CAS  Google Scholar 

  31. Voigt, J.M., van Houten, B., Sancar, A. & Topal, M.D. Repair of O6-methylguanine by abc excinuclease of E. coli in vitro. J. biol. Chem. 264, 5172–5176 (1989).

    CAS  PubMed  Google Scholar 

  32. Yoke, W.K., Wallace, S.S. & van Houten, B. uvr ABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. Mut. Res. 235, 147–156 (1990).

    Article  Google Scholar 

  33. Olanow, C.W. An introduction to the free radical hypothesis in Parkinson's disease. Ann. Neurol. 32, S2–S9 (1992).

    Article  CAS  Google Scholar 

  34. Harrison, D.J., Kharbanda, R., Cunningham, D.S., McLellan, L.I. & Hayes, J.D. Distribution of glutathione S-transferase isoenzymes in human kidney. J. clin. Pathol. 42, 624– 628 (1989).

    Article  CAS  Google Scholar 

  35. Epstein, C.J. & Gatens, E.A. Nuclear ploidy in mammalian parenchymal liver cells. Nature 214, 1050–1051 (1967).

    Article  CAS  Google Scholar 

  36. Pinkus, R., Bergelson, S. & Daniel, V. Phenobarbitol induction of AP1 binding activity mediates activation of glutathione S-transferase and quinone reductase gene expression. Biochem. J. 290, 637–640 (1993).

    Article  CAS  Google Scholar 

  37. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  Google Scholar 

  38. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  Google Scholar 

  39. Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. Formation of germline chimaeras from embryo-derived teratocarcinoma cells. Nature 309, 255–258 (1984).

    Article  CAS  Google Scholar 

  40. Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. & Melton, D.W. Germline transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  Google Scholar 

  41. Jenkins, J.R., Rudge, K., Redmond, S. & Wadeevans, A. Cloning and expression analysis of full length mouse cDNA sequences encoding the transformation associated protein p53. Nucl. Acids Res. 12, 5609–5626 (1984).

    Article  CAS  Google Scholar 

  42. Minty, A.J. et al. Construction and characterisation of a recombinant plasmid molecule containing a complementary DNA transcript of mouse α actin mRNA. J. biol. Chem. 256, 1008–1014 (1981).

    CAS  Google Scholar 

  43. Ormerod, M.G. . in Flow Cytometry (ed. Ormerod, M.G.) 69–86 (IRL Press, Oxford, 1990).

    Google Scholar 

  44. Brugal, G. et al. HOME: Highly optimized microscope environment. Cytometry 13, 109–116 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McWhir, J., Selfridge, J., Harrison, D. et al. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5, 217–224 (1993). https://doi.org/10.1038/ng1193-217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing