Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human homologs of a Drosophila Enhancer of Split gene product define a novel family of nuclear proteins

An Erratum to this article was published on 01 December 1992

Abstract

Notch and the m9/10 gene (groucho) of the Enhancer of split (E(spl)) complex are members of the “Notch group” of genes, which is required for a variety of cell fate choices in Drosophila. We have characterized human cDNA clones encoding a family of proteins, designated TLE, that are homologous to the E(spl) m9/10 gene product, as well as a novel Notch–related protein. The TLE genes are differentially expressed and encode nuclear proteins, consistent with the presence of sequence motifs associated with nuclear functions. The structural redundancy implied by the existence of more than one TLE and Notch–homologous gene may be a feature of the human counterparts of the developmentally important Drosophila Notch group genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S. & Simpson, P. Choosing a cell fate: a view from the Notch locus. Trends Genet. 7, 403–408 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Wharton, K.A., Johansen, K.M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Kidd, S., Kelley, M.R. & Young, M.W. Sequence of the Notch locus of D. melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Molec. cell. Biol. 6, 3094–3108 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaessin, H., Vielmetter, J. & Campos-Ortega, J.A. Genetic interactions in early neurogenesis of Drosophila melanogaster. J. Neurogenet. 2, 291–308 (1985).

    Article  Google Scholar 

  5. Fehon, R.G. et al. Molecular interactions between the protein products of the nuerogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Fleming, R.J., Scottgale, T.N., Diederich, R.J. & Artavanis-Tsakonas, S. The gene Serrate encodes a putative EGF-like transmembrane protein essential for proper ectodermal development in Drosophila melanogaster. Genes Devl. 4, 2188–2201 (1990).

    Article  CAS  Google Scholar 

  7. Xu, T., Rebay, I., Fleming, R.J., Scottgale, N. & Artavanis-Tsakonas, S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev. 4, 464–475 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Rebay, I. et al. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67, 687–699 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, U., Speicher, S.A. & Knust, E. The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111, 749–761 (1991).

    CAS  PubMed  Google Scholar 

  10. Xu, T. & Artavanis-Tsakonas, S. deltex, a locus interacting with the neurogenic genes, Notch, Delta, and mastermind in Drosophila melanogaster. Genetics 126, 665–677 (1991).

    Google Scholar 

  11. Knust, E., Tietze, K. & Campos-Ortega, J.A. Molecular analysis of the neurogenic locus Enhancer of split of Drosophila melanogaster. EMBO J. 6, 4113–4123 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartley, D.A., Preiss, A. & Artavanis-Tsakonas, S. A deduced gene product from the Drosophila neurogenic locus, Enhancer of split, shows homology to mammalian G protein β subunits. Cell 55, 785–795 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Preiss, A., Hartley, D.A. & Artavanis-Tsakonas, S. The molecular genetics of Enhancer of split, a gene required for embryonic neural development in Drosophila. EMBO J. 7, 3917–3927 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klambt, C., Knust, E., Tietze, K. & Campos-Ortega, J.A. Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J. 8, 203–210 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 4, 1688–1700 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Delidakis, C., Preiss, A., Hartley, D.A. & Artavanis-Tsakonas, S. Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics 129, 803–823 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Coffman, C., Harris, W. & Kintner, C. Xotch, the Xenopus homolog of Drosophila Notch. Science 249, 1438–1441 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Ellisen, L. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Weinmaster, G., Roberts, V.J. & Lemke, G. A homolog of Drosophila Notch expressed during mammalian development. Development 113, 199–205 (1991).

    CAS  PubMed  Google Scholar 

  20. Fehon, R.G., Johansen, K., Rebay, I. & Artavanis-Tsakonas, S. Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: implications for Notch function. J. cell Biol. 113, 657–669 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Jans, D.A., Ackermann, M.J., Bischoff, J.R., Beach, D.H. & Peters, R. p34cdc2-mediated phosphorylation at T124 inhibits nuclear import of SV-40 T antigen proteins. J. cell Biol. 115, 1203–1212 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Simon, M.I., Strathmann, M.P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Rihs, H.P., Jans, D.A., Fan, H. & Peters, R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV 40 T-antigen. EMBO J. 10, 633–639 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalderon, D., Richardson, W.D., Markham, A.F. & Smith, A.E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 499–509 (1984).

    Article  Google Scholar 

  26. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences- a consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Meisner, H. & Czech, M.P. Phosphorylation of transcriptional factors and cell-cycle dependent proteins by casein kinase II. Curr. Opin. Cell Biol. 3, 474–483 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Moreno, S. & Nurse, P. Substrates for p34cdc2: in vivo veritas? Cell 61, 549–551 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, F.E. & Trumbly, R.J. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Molec. cell Biol. 10, 6500–6511 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, D.B. & Johnson, K.S. Single-step purification of polypeptides expressed in Eschehchia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Rogers, S., Wells, R. & Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Yochem, J. & Byers, B. Structural comparison of the yeast cell division cycle gene CDC4 and a related pseudogene. J. molec. Biol. 195, 233–245 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Dalrymple, M.A., Petersen-Bjorn, S., Friesen, J.D. & Beggs, J.D. The product of the PRP4 gene of S. cerevisiae shows homology to β subunits of G proteins. Cell 58, 811–812 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Ruggieri, R. et al. MS11, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 86, 8778–8782 (1989).

    Article  CAS  Google Scholar 

  35. Guillemat, F., Billault, A. & Auffray, C. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc. natn. Acad. Sci. U.S.A. 86, 4594–4598 (1989).

    Article  Google Scholar 

  36. Goebl, M. & Yanagida, M. The TPR snap helix repeat: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci. 16, 173–177 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Williams, F.E., Varanasi, U. & Trumbly, R.J. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Molec cell. Biol. 11, 3307–3316 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aves, S.J., Durkacz, B.W., Carr, A. & Nurse, P. Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 “start” gene. EMBO J. 4, 457–463 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Breeden, L. & Nasmyth, K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329, 651–654 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh, S. et al. Cloning of the p50 DNA binding subunit of NF-kB: homology to rel and dorsal. Cell 62, 1019–1029 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. La Marco, K., Thompson, C.C., Byers, B.P., Walton, E.M. & McKnight, S.L. Identification of ETS- and Notch-related subunits in GA binding protein. Science 253, 789–792 (1991).

    Article  CAS  Google Scholar 

  42. Haskill, S. et al. Characterization of an immediate-early gene induced in adherent monocytes that encodes 1kB-like activity. Cell 65, 1281–1289 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Thompson, C.C., Brown, T.A. & McKnight, S.L. Convergence of Ets- and Notch-related structural motifs in a heteromeric DNA binding complex. Science 253, 762–768 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Stifani, S., George, R. & Schneider, W.J. Solubilization and characterization of the chicken oocyte vitellogenin receptor. Biochem. J. 250, 467–475 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (eds Ford N. et al.)(Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1989).

    Google Scholar 

  46. McVey, D. et al. Phosphorylation of large tumor antigen by cdc2 stimulates SV 40 DNA replication. Nature 341, 503–507 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Dang, C.V. & Lee, W.M. Identification of the human c-myc protein nuclear translocation signal. Molec. cell. Biol. 8, 4048–4054 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jenkins, J., Rudge, K. & Currie, G. Cellular immortalization by a cDNA clone encoding the transformation associated phosphoprotein p53. Nature 312, 651–654 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Nomura, N. et al. Isolation of human cDNA clones of myb-related genes, A-myb and B-myb. Nucl. Acids Res. 16, 11075–11089 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luscher, B., Christenson, E., Litchfield, D., Krebs, E. & Eisenman, R. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344, 517–522 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Steward, R. dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Grasser, F.A., Scheidtman, K.H., Tuazon, P.T., Traugh, J.A. & Walter, G. In vitro phosphorylation of SV 40 large T antigen. Virology 165, 13–22 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Luscher, B., Kuenzel, E.A., Krebs, E.G. & Eisenman, R.N. Myc oncoproteins are phosphorylated by casein kinase II. EMBO J. 8, 1111–1119 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bischoff, J.R., Friedman, P.N., Marshak, D.R., Prives, C. & Beach, D. Human p53 is phosphorylated by p60-cdc2 and cyclin-cdc2. Proc. natn. Acad. Sci. U.S.A. 87, 4766–4770 (1990).

    Article  CAS  Google Scholar 

  55. Meek, D.W., Simon, S., Kikkawa, U. & Eckart, W. The p53 tumor suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9, 3253–3260 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stifani, S., Blaumueller, C., Redhead, N. et al. Human homologs of a Drosophila Enhancer of Split gene product define a novel family of nuclear proteins. Nat Genet 2, 119–127 (1992). https://doi.org/10.1038/ng1092-119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1092-119

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing