Abstract
High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure– or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lim, S.S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).
Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383, 1899–1911 (2014).
Munroe, P.B., Barnes, M.R. & Caulfield, M.J. Advances in blood pressure genomics. Circ. Res. 112, 1365–1379 (2013).
Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).
Johnson, T. et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89, 688–700 (2011).
Tomaszewski, M. et al. Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array. Hypertension 56, 1069–1076 (2010).
Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am. J. Hum. Genet. 94, 349–360 (2014).
Ganesh, S.K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).
Simino, J. et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am. J. Hum. Genet. 95, 24–38 (2014).
Zhu, X. et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am. J. Hum. Genet. 96, 21–36 (2015).
Salfati, E., Morrison, A.C., Boerwinkle, E. & Chakravarti, A. Direct Estimates of the Genomic Contributions to Blood Pressure Heritability within a Population-Based Cohort (ARIC). PLoS One 10, e0133031 (2015).
Schork, N.J., Murray, S.S., Frazer, K.A. & Topol, E.J. Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 19, 212–219 (2009).
Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).
Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. http://dx.doi.org/10.1038/ng.3660 (2016).
Liu, D.J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet. 46, 200–204 (2014).
Wu, M.C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).
Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).
Vissers, L.E. et al. Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur. J. Hum. Genet. 23, 317–324 (2015).
Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).
Arking, D.E. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836 (2014).
den Hoed, M. et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013).
Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
Traylor, M. et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).
Smith, N.L. et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 3, 256–266 (2010).
Vasan, R.S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. J. Am. Med. Assoc. 302, 168–178 (2009).
Russo, S.B. et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122, 3919–3930 (2012).
Oudot-Mellakh, T. et al. Genome wide association study for plasma levels of natural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA project. Br. J. Haematol. 157, 230–239 (2012).
Smith, N.L. et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 121, 1382–1392 (2010).
Bleil, M.E., Gregorich, S.E., McConnell, D., Rosen, M.P. & Cedars, M.I. Does accelerated reproductive aging underlie premenopausal risk for cardiovascular disease? Menopause 20, 1139–1146 (2013).
Guan, R. et al. rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev. Dyn. 242, 1395–1404 (2013).
Wozniak, M.A., Kwong, L., Chodniewicz, D., Klemke, R.L. & Keely, P.J. R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol. Biol. Cell 16, 84–96 (2005).
Tuckwell, D. Identification and analysis of collagen alpha 1(XXI), a novel member of the FACIT collagen family. Matrix Biol. 21, 63–66 (2002).
Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).
Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
Huan, T. et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol. Syst. Biol. 11, 799 (2015).
Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).
Park, H.W. et al. Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc. Natl. Acad. Sci. USA 108, 10750–10755 (2011).
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
Te Riet, L., van Esch, J.H., Roks, A.J., van den Meiracker, A.H. & Danser, A.H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 116, 960–975 (2015).
Gao, J. et al. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin. Sci. (Lond.) 127, 135–148 (2014).
Tobin, M.D., Sheehan, N.A., Scurrah, K.J. & Burton, P.R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).
Mahajan, A. et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 11, e1004876 (2015).
Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
Burgess, S. & Thompson, S.G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).
Thompson, S.G. & Sharp, S.J. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat. Med. 18, 2693–2708 (1999).
Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).
GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
Acknowledgements
Full acknowledgments appear in the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
Supervision and management of the project: J.M.H.H. and P.B.M. The following authors contributed to the drafting of the manuscript: J.M.M.H., P.B.M. P. Surendran, H.W., A.S.B., F.D., J.P.C., D.R.B., K.W., M. Tomaszewski, F.W.A., L.V.W., N.J.S., J.D., A.K.M., H.Y., C.M.L., N.G., X.S., T. Tukiainen, D.F.F., O.G., T.F. and V.T. All authors critically reviewed and approved the final version of the manuscript. Statistical analysis review: J.M.M.H., P. Surendran, F.D., H.W., J.P.C., R.Y., N.M., P.B.M., L.V.W., H.Y., T.F., E. Mihailov, A.D.M., A. Mahajan, A. Moayyeri, E.E., A.S.B., F.W.A., M.J.C., C.F., T.F., S.E.H., A.S.H., J.E.H., J.L., G.M., J.M., N.M., A.P.M., A. Poveda, N.J.S., R.A.S., L.S., K.E.S., M. Tomaszewski, V.T., T.V.V., N.V., K.W., A.M.Y., W. Zhang, N.G., C.M.L., A.K.M., X.S. and T. Tuomi. Central data quality control: J.M.M.H., A.S.B., P. Surendran, R.Y., F.D., H.W., J.P.C., T.F., L.V.W., P.B.M., E. Mihailov, N.M., C.M.L., N.G., X.S. and A.K.M. Central data analysis: J.M.M.H., P. Surendran, F.D., H.W., J.P.C., N.G., C.M.L., A.K.M. and X.S. Pathway analysis and literature review: J.M.M.H., D.R.B., P.B.M., M. Tomaszewski, K.W., V.T., O.G., A.T. and F.W.A. GWAS lookups, eQTL analysis, GRS analysis, variant annotation and enrichment analyses: J.M.M.H., A.S.B., D.R.B., J.R.S., D.F.F., F.D., M. Harakalova, P.B.M., F.W.A., T. Tuomi, C.M.L., A.K.M. and S. Burgess. Study investigators in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): D.S.A., P.A., E.D.A., D.A., A.S.B., R.C., J.D., J.F., I.F., P.F., J.W.J., F. Kee, A.S.M., S.F.N., B.G.N., D.S., N. Sattar, J.V., F.W.A., P.I.W.d.B., M.J.B., M.J.C., J.C.C., J.M.C., I.J.D., G.D., A.F.D., P.E., T.E., P.W.F., G.G., P.v.d.H., C.H., K.H., E.I., M.-R.J., F. Karpe, S.K., J.S.K., L. Lind, M.I.M., O.M., A. Metspalu, A.D.M., A.P.M., P.B.M., M.E.N., S.P., C.N.A.P., O. Polasek, D.J.P., S.R., O.R., I.R., V.S., N.J.S., P. Sever, T.D.S., J.M.S., N.J.W., C.J.W., E.Z., M.B., I.B., F.S.C., L.G., T.H., E.K.-H., P.J., J. Kuusisto, M.L., T.A.L., A.L., K.L.M., H.O., O. Pedersen, R.R., J.T., M.U. M.U.-N., A. Malarstig, D.F.R., M. Hoek, T.F.V. Study phenotyping in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): P.A., D.A., S. Blankenberg, M.C., J.F., J.W.J., F. Kee, K.K., S.F.N., B.G.N., C.J.P., A.R., M.S., N. Sattar, J.V., W. Zhao, R.A.d.B., M.J.B., M.J.C., J.C.C., J.M.C., A.F.D., A.S.F.D., L.A.D., T.E., A.-E.F., G.G., G.H., P.v.d.H., A.S.H., O.L.H., M. Hassinen, E.I., M.-R.J., F. Karpe, J.S.K., L. Lind, L. Lannfelt, G.M., A. Matchan, P.v.d.M., A. Metspalu, R. Mägi, M.J.N., M.E.N., O. Polasek, N.P., F.R., V.S., N.J.S., T.D.S., A.V.S., J.M.S., M. Tomaszewski, A.-C.V., N.V., N.J.W., T. Tuomi, C.C., L.L.H., A.T.K., P.K., J.L., S.M., E.R.B.P., A.S., T.S., H.M.S., B.T. Study data quality control and analysis in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): A.S.B., A.J.M.d.C., K.-H.H., J.M.M.H., A.K., J. Kontto, C. Langenberg, S.F.N., B.G.N., M.M.-N., S.P., M.P., P. Surendran, S.T., G.V., S.M.W., R.Y., F.W.A., J.P.C., F.D., A.-E.F., T.F., C.H., A. Matchan, A. Mahajan, A.P.M., P.B.M., C.N.A.P., N.W.R., F.R., N.J.S., M. Tomaszewski, V.T., H.W., H.Y., N.G., A.K.M., X.S. Exome chip data quality control in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): A.S.B., K.-H.H., J.M.M.H., A.K., C. Langenberg, S.F.N., B.G.N., P. Surendran, R.Y., F.W.A., P.I.W.d.B., A.I.F.B., J.C.C., J.P.C., P.D., L.A.D., F.D., E.E., C.F., T.F., S.E.H., P.v.d.H., S.S.-H., K.H., J.E.H., E.K., A. Mahajan, G.M., J.M., N.M., E. Mihailov, A. Moayyeri, A.P.M., P.B.M., C.P.N., M.J.N., C.N.A.P., A. Poveda, N.W.R., N.R.R., R.A.S., N. Soranzo, L.S., K.E.S., M.D.T., V.T., T.V.V., N.V., H.W., H.Y., A.M.Y., E.Z., W. Zhang, N.G., C.M.L., A.K.M., X.S. Exome chip data analysis in alphabetical order by consortium (CHD Exome+, ExomeBP and GoT2D): J.M.M.H., P. Surendran, R.Y., F.W.A., P.I.W.d.B., A.I.F.B., R.A.d.B., M.J.C., J.C.C., J.P.C., P.D., L.A.D., P.E., E.E., C.F., T.F., P.W.F., S.F., C.J.G., S.E.H., P.v.d.H., A.S.H., C.H., O.L.H., J.E.H., E.I., M.-R.J., F. Karpe, J.S.K., D.C.M.L., L. Lind, J.L., G.M., R. Marioni, J.M., N.M., M.I.M., P.v.d.M., O.M., C.M., E. Mihailov, A. Moayyeri, A.P.M., R. Mägi, P.B.M., C.P.N., M.J.N., T.O., A. Palotie, A. Poveda, N.W.R., N.R.R., N.J.S., R.A.S., N. Soranzo, L.S., T.D.S., K.E.S., M.D.T., E.T., V.T., T.V.V., N.V., L.V.W., N.J.W., H.W., H.Y., A.M.Y., E.Z., H.Z., W. Zhang, L.L.B., A.P.G., N.G., J.R.H., A.U.J., J.B.-J., C.M.L., A.K.M., N.N., X.S., A.S., A.J.S. GRS lookups: A.E.J., E. Marouli, H.S.M., H.L., H.M.H., J.F.F., M. Traylor, R.S.V., W.L. CHARGE EXOME-BP lookups: Study design. A.T.K., C. Liu, C.N.-C. Analysis. A.T.K., C. Liu.
Corresponding authors
Ethics declarations
Competing interests
N.P. has received financial support from several pharmaceutical companies that manufacture either blood pressure -lowering or lipid-lowering agents, or both, and consultancy fees. S.K. has received research grants from Merck, Bayer and Aegerion, is on the SAB of Catabasis, Regeneron Genetics Center, Merck and Celera, has equity in San Therapeutics and Catabasis, and performs consulting for Novartis, Aegerion, Bristol Myers Squibb, Sanofi, AstraZeneca and Alnylam. P. Sever has received research awards from Pfizer. A. Malarstig and M.U.-N. are full-time employees of Pfizer. D.F.R. and M. Hoek are full-time employees of Merck. M.J.C. is Chief Scientist for Genomics England, a UK government company. The authors declare no other competing financial interests.
Additional information
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
A full list of members and affiliations appears in the Supplementary Note
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–8 and Supplementary Note (PDF 19318 kb)
Supplementary Tables
Supplementary Tables 1–20 (XLSX 226 kb)
Rights and permissions
About this article
Cite this article
Surendran, P., Drenos, F., Young, R. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48, 1151–1161 (2016). https://doi.org/10.1038/ng.3654
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.3654
This article is cited by
-
Increasing number of long-lived ancestors marks a decade of healthspan extension and healthier metabolomics profiles
Nature Communications (2023)
-
Whole-exome sequencing identifies novel protein-altering variants associated with serum apolipoprotein and lipid concentrations
Genome Medicine (2022)
-
RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification
BMC Nephrology (2022)
-
Elucidating the genetic architecture of DNA methylation to identify promising molecular mechanisms of disease
Scientific Reports (2022)
-
Serum metabolites of hypertension among Chinese adolescents aged 12–17 years
Journal of Human Hypertension (2022)