Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

Abstract

The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of 15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole-exome sequencing of 149 EAC tumor-normal pairs, 15 of which have also been subjected to whole-genome sequencing. We identify a mutational signature defined by a high prevalence of A>C transversions at AA dinucleotides. Statistical analysis of exome data identified 26 significantly mutated genes. Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC. The new significantly mutated genes include chromatin-modifying factors and candidate contributors SPG20, TLR4, ELMO1 and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 identifies increased cellular invasion. Therefore, we suggest the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High frequencies of A>C transversions at AA sites identified from whole-genome sequencing are observed in less expressed regions of the genome.
Figure 2: Mutation frequencies and significantly mutated genes in EAC as identified by whole-exome sequencing.
Figure 3: Recurrent somatic alterations in ELMO1, DOCK2 and other RAC1 GEFs.
Figure 4: Somatic mutations in frequently altered pathways in cancer, putative therapeutic targets and treatment biomarkers.
Figure 5: Genetic alterations identified by whole-exome sequencing across 145 EACs affecting the Wnt/β-catenin, RTK-RAS-PI3K, TGF-β/SMAD4, chromatin-remodeling enzyme, G1 to S progression and p53 pathways.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Holmes, R.S. & Vaughan, T.L. Epidemiology and pathogenesis of esophageal cancer. Semin. Radiat. Oncol. 17, 2–9 (2007).

    Article  PubMed  Google Scholar 

  2. Pohl, H. & Welch, H.G. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl. Cancer Inst. 97, 142–146 (2005).

    Article  PubMed  Google Scholar 

  3. Wu, A.H., Wan, P. & Bernstein, L. A multiethnic population-based study of smoking, alcohol and body size and risk of adenocarcinomas of the stomach and esophagus (United States). Cancer Causes Control 12, 721–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Chung, S.M., Kao, J., Hyjek, E. & Chen, Y.T. p53 in esophageal adenocarcinoma: a critical reassessment of mutation frequency and identification of 72Arg as the dominant allele. Int. J. Oncol. 31, 1351–1355 (2007).

    CAS  PubMed  Google Scholar 

  5. Hardie, L.J. et al. p16 expression in Barrett's esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. Cancer Lett. 217, 221–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, Y.W., Heath, E.I., Heitmiller, R., Forastiere, A.A. & Wu, T.T. Mutations in β-catenin and APC genes are uncommon in esophageal and esophagogastric junction adenocarcinomas. Mod. Pathol. 13, 1055–1059 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sommerer, F. et al. Mutations of BRAF and KRAS2 in the development of Barrett's adenocarcinoma. Oncogene 23, 554–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wijnhoven, B.P., de Both, N.J., van Dekken, H., Tilanus, H.W. & Dinjens, W.N. E-cadherin gene mutations are rare in adenocarcinomas of the oesophagus. Br. J. Cancer 80, 1652–1657 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pühringer-Oppermann, F.A., Stein, H.J. & Sarbia, M. Lack of EGFR gene mutations in exons 19 and 21 in esophageal (Barrett's) adenocarcinomas. Dis. Esophagus 20, 9–11 (2007).

    Article  PubMed  Google Scholar 

  10. Guo, M., Liu, S. & Lu, F. Gefitinib-sensitizing mutations in esophageal carcinoma. N. Engl. J. Med. 354, 2193–2194 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Phillips, W.A. et al. Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and Barrett's esophagus. Int. J. Cancer 118, 2644–2646 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Boonstra, J.J. et al. Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts. Genes Chromosom. Cancer 51, 272–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal, N. et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2, 899–905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  15. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  20. Berger, M.F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bass, A.J. et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 43, 964–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orlando, R.C. Mucosal defense in Barrett's esophagus. in Barrett's Esophagus and Esophageal Adenocarcinoma (ed. Sharma, P.) 60–72 (Blackwell Publishing, Oxford, 2006).

  23. Dulak, A.M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  25. Banerji, S . et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farris, A.B. III et al. Clinicopathologic and molecular profiles of microsatellite unstable Barrett esophagus–associated adenocarcinoma. Am. J. Surg. Pathol. 35, 647–655 (2011).

    Article  PubMed  Google Scholar 

  28. Sanui, T. et al. DOCK2 regulates Rac activation and cytoskeletal reorganization through interaction with ELMO1. Blood 102, 2948–2950 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hanawa-Suetsugu, K. et al. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms. Proc. Natl. Acad. Sci. USA 109, 3305–3310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gómez del Pulgar, T., Benitah, S.A., Valeron, P.F., Espina, C. & Lacal, J.C. Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27, 602–613 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kissil, J.L. et al. Requirement for Rac1 in a K-ras–induced lung cancer in the mouse. Cancer Res. 67, 8089–8094 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Pan, Y. et al. Expression of seven main Rho family members in gastric carcinoma. Biochem. Biophys. Res. Commun. 315, 686–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sander, E.E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishihara, H. et al. Non-adherent cell–specific expression of DOCK2, a member of the human CDM-family proteins. Biochim. Biophys. Acta 1452, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Jarzynka, M.J. et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 67, 7203–7211 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shrestha, Y. et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 31, 3397–3408 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Medina, P.P. et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat. 29, 617–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Zang, Z.J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, S. et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Guan, B., Wang, T.L. & Shih Ie, M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71, 6718–6727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel, H. et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat. Genet. 31, 347–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bakowska, J.C., Jupille, H., Fatheddin, P., Puertollano, R. & Blackstone, C. Troyer syndrome protein spartin is mono-ubiquitinated and functions in EGF receptor trafficking. Mol. Biol. Cell 18, 1683–1692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lind, G.E. et al. SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis. Oncogene 30, 3967–3978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garza-Gonzalez, E. et al. Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8-251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer 7, 70 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bauer, A.K. et al. Toll-like receptor 4 in butylated hydroxytoluene–induced mouse pulmonary inflammation and tumorigenesis. J. Natl. Cancer Inst. 97, 1778–1781 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kennedy, M.N. et al. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J. Biol. Chem. 279, 34698–34704 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Park, B.S. et al. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Schreiner, A. et al. Junction protein shrew-1 influences cell invasion and interacts with invasion-promoting protein CD147. Mol. Biol. Cell 18, 1272–1281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, L. et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483, 608–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Pelletier, N., Champagne, N., Stifani, S. & Yang, X.J. MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21, 2729–2740 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    CAS  PubMed  Google Scholar 

  56. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Smith, G. et al. Activating K-Ras mutations outwith 'hotspot' codons in sporadic colorectal tumours—implications for personalised cancer medicine. Br. J. Cancer 102, 693–703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ikediobi, O.N. et al. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 5, 2606–2612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, J.W. et al. ERBB2 kinase domain mutation in the lung squamous cell carcinoma. Cancer Lett. 237, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, J.W. et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin. Cancer Res. 12, 57–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Badreddine, R.J. & Wang, K.K. Barrett esophagus: an update. Nat. Rev. Gastroenterol. Hepatol. 7, 369–378 (2010).

    Article  PubMed  Google Scholar 

  65. Inoue, M. et al. Induction of chromosomal gene mutations in Escherichia coli by direct incorporation of oxidatively damaged nucleotides. New evaluation method for mutagenesis by damaged DNA precursors in vivo. J. Biol. Chem. 273, 11069–11074 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. MacConaill, L.E. et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS ONE 4, e7887 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bang, Y.J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Fisher, S. et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 12, R1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876–D882 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Google Scholar 

  75. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Griffith, O.L. et al. ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res. 36, D107–D113 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011).

  78. Chen, C.L. et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447–457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stamatoyannopoulos, J.A. et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 41, 393–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Meyerson for helpful discussions and review of the manuscript and members of the Broad Institute Biological Samples Platform, Genetic Analysis Platform and Genome Sequencing Platform for their assistance. We are also grateful for the physicians and hospital staff whose efforts in collecting these samples are essential to this research. This work was supported by the US National Human Genome Research Institute (NHGRI) Large-Scale Sequencing Program (U54 HG003067 to the Broad Institute, E.S.L.), the National Cancer Institute (K08 CA134931 to A.J.B.), the DeGregorio Family Foundation (A.J.B.), the Karin Grunebaum Cancer Research Foundation (A.J.B.), the Target Cancer (A.J.B.) and Connecticut Conquers Cancer (A.J.B.). S.O. and Y.I. are supported by the National Cancer Institute (R01 CA151993 to S.O.) and the Dana-Farber/Harvard Cancer Center GI Cancer Specialized Programs of Research Excellence (US National Institutes of Health (NIH) grant P50 CA127003). D.G.B. is supported by NIH grants CA163059 and CA46592. J.D.L. is supported by NIH grant CA090665. T.E.G. is supported by NIH grant CA130853.

Author information

Authors and Affiliations

Authors

Contributions

P.S., S.P., M.S.L., C.F., C. Stewart, S.E.S., A.M., K.C., A.S., S.L.C., G.S., D.V., A.H.R. and R.B. performed computational analyses. E.S., D.A., K.T., C. Sougnez, R.C.O., C.G. and S.B.G. processed samples and supervised exome sequencing. A.M.D., S.B., D.Z., L.L., J.L., R.R., A.C., R.L., J.D.L., A.P., D.G.B., T.E.G. and A.J.B. coordinated sample acquisition, processing, pathological review and analysis. Y.I. and S.O. performed MSI testing. A.M.D., P.S., T.R.G., S.B.G., E.S.L., G.G. and A.J.B. designed the study. A.M.D., P.S., S.P., M.S.L., G.G. and A.J.B. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Gad Getz or Adam J Bass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–6 and Supplementary Tables 1–3, 5, 6, 8, 10–13 and 16–18 (PDF 1263 kb)

Supplementary Table 4

Predicted rearrangements by dRanger algorithm (XLSX 394 kb)

Supplementary Table 7

Frequencies of all middle-base mutations with 5' and 3' base context identified by WGS (n=16) (XLSX 51 kb)

Supplementary Table 9

Rates of all middle-base mutations with 5' and 3' base context identified by WGS in exons (XLSX 50 kb)

Supplementary Table 14

Somatic mutations in MSI positive samples detected by WES (n=4) (XLSX 1317 kb)

Supplementary Table 15

Somatic mutations in non-MSI positive samples detected by WES (n=145) (XLSX 6264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulak, A., Stojanov, P., Peng, S. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 45, 478–486 (2013). https://doi.org/10.1038/ng.2591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2591

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer