Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reconciling the chemistry and biology of reactive oxygen species

Abstract

There is a vast literature on the generation and effects of reactive oxygen species in biological systems, both in relation to damage they cause and their involvement in cell regulatory and signaling pathways. The biological chemistry of different oxidants is becoming well understood, but it is often unclear how this translates into cellular mechanisms where redox changes have been demonstrated. This review addresses this gap. It examines how target selectivity and antioxidant effectiveness vary for different oxidants. Kinetic considerations of reactivity are used to assess likely targets in cells and how reactions might be influenced by restricted diffusion and compartmentalization. It also highlights areas where greater understanding is required on the fate of oxidants generated by cellular NADPH oxidases and on the identification of oxidant sensors in cell signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of reactive oxidants by cellular NADPH oxide systems.
Figure 2: Selectivity of hydrogen peroxide for peroxiredoxins, protein tyrosine phosphatases and GSH at estimated cellular concentrations.
Figure 3: Estimated diffusion distances of selected oxidants.
Figure 4

Similar content being viewed by others

References

  1. Halliwell, B. & Gutteridge, J.M.C. Free Radicals in Biology and Medicine 1–677 (Oxford University Press, Oxford, 2007).

    Google Scholar 

  2. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 23–33 (2002).

  3. McCord, J.M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    CAS  PubMed  Google Scholar 

  4. O'Brien, P.J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 80, 1–41 (1991).

    CAS  PubMed  Google Scholar 

  5. O'Brien, P.J. Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: the reactivity of these radicals with GSH, DNA, and unsaturated lipid. Free Radic. Biol. Med. 4, 169–183 (1988).

    CAS  PubMed  Google Scholar 

  6. Winterbourn, C.C. Free radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64, 321–330 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathan, C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 111, 769–778 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    CAS  PubMed  Google Scholar 

  9. Nauseef, W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 219, 88–102 (2007).

    CAS  PubMed  Google Scholar 

  10. Cross, A.R. & Segal, A.W. The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 1657, 1–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Winterbourn, C.C., Hampton, M.B., Livesey, J.H. & Kettle, A.J. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 281, 39860–39869 (2006).

    CAS  PubMed  Google Scholar 

  12. Reeves, E.P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291–297 (2002).

    CAS  PubMed  Google Scholar 

  13. Murphy, R. & Decoursey, T.E. Charge compensation during the phagocyte respiratory burst. Biochim. Biophys. Acta 1757, 996–1011 (2006).

    CAS  PubMed  Google Scholar 

  14. Pullar, J.M., Vissers, M.C.M. & Winterbourn, C.C. Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50, 259–266 (2000).

    CAS  PubMed  Google Scholar 

  15. Brennan, M.L. & Hazen, S.L. Amino acid and protein oxidation in cardiovascular disease. Amino Acids 25, 365–374 (2003).

    CAS  PubMed  Google Scholar 

  16. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    CAS  PubMed  Google Scholar 

  17. Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

    CAS  PubMed  Google Scholar 

  18. Rhee, S.G., Bae, Y.S., Lee, S.R. & Kwon, J. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000, PE1 (2000).

    CAS  PubMed  Google Scholar 

  19. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    CAS  PubMed  Google Scholar 

  20. Forman, H.J. Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic. Biol. Med. 42, 926–932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stone, J.R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243–270 (2006).

    CAS  PubMed  Google Scholar 

  22. Tonks, N.K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670 (2005).

    CAS  PubMed  Google Scholar 

  23. Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419–16424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ritsick, D.R., Edens, W.A., Finnerty, V. & Lambeth, J.D. Nox regulation of smooth muscle contraction. Free Radic. Biol. Med. 43, 31–38 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Clempus, R.E. et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42–48 (2007).

    CAS  PubMed  Google Scholar 

  26. Mahadev, K. et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol. Cell. Biol. 24, 1844–1854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ushio-Fukai, M. Localizing NADPH oxidase-derived ROS. Sci. STKE 2006, re8 (2006).

    PubMed  Google Scholar 

  28. Wardman, P. & von Sonntag, C. Kinetic factors that control the fate of thiyl radicals in cells. Methods Enzymol. 251, 31–45 (1995).

    CAS  PubMed  Google Scholar 

  29. Poole, L.B., Karplus, P.A. & Claiborne, A. Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol. 44, 325–347 (2004).

    CAS  PubMed  Google Scholar 

  30. D'Autreaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    CAS  PubMed  Google Scholar 

  31. Bonini, M.G. & Augusto, O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 276, 9749–9754 (2001).

    CAS  PubMed  Google Scholar 

  32. Dedon, P.C. & Tannenbaum, S.R. Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423, 12–22 (2004).

    CAS  PubMed  Google Scholar 

  33. Lancaster, J.R. Jr. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem. Res. Toxicol. 19, 1160–1174 (2006).

    CAS  PubMed  Google Scholar 

  34. Medinas, D.B., Cerchiaro, G., Trindade, D.F. & Augusto, O. The carbonate radical and related oxidants derived from bicarbonate buffer. IUBMB Life 59, 255–262 (2007).

    CAS  PubMed  Google Scholar 

  35. Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    CAS  PubMed  Google Scholar 

  36. Winterbourn, C.C. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim. Biophys. Acta 840, 204–210 (1985).

    CAS  PubMed  Google Scholar 

  37. Pattison, D.I. & Davies, M.J. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr. Med. Chem. 13, 3271–3290 (2006).

    CAS  PubMed  Google Scholar 

  38. Nalwaya, N. & Deen, W.M. Nitric oxide, oxygen, and superoxide formation and consumption in macrophage cultures. Chem. Res. Toxicol. 18, 486–493 (2005).

    CAS  PubMed  Google Scholar 

  39. Stone, J.R. An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch. Biochem. Biophys. 422, 119–124 (2004).

    CAS  PubMed  Google Scholar 

  40. Winterbourn, C.C. & Kettle, A.J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29, 403–409 (2000).

    CAS  PubMed  Google Scholar 

  41. Winterbourn, C.C. & Metodiewa, D. Reactivity of biologically relevant thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999).

    CAS  PubMed  Google Scholar 

  42. Wood, Z.A., Schroder, E., Robin, H.J. & Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003).

    CAS  PubMed  Google Scholar 

  43. Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L. & Radi, R. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell. Biochem. 44, 83–113 (2007).

    PubMed  Google Scholar 

  44. Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E. & Augusto, O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326–334 (2007).

    CAS  PubMed  Google Scholar 

  45. Parsonage, D., Karplus, P.A. & Poole, L.B. Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc. Natl. Acad. Sci. USA published online, doi:10.1073/pnas.0708308105 (28 December 2007).

  46. Wood, Z.A., Poole, L.B. & Karplus, P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003).

    CAS  PubMed  Google Scholar 

  47. Choi, M.H. et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347–353 (2005).

    CAS  PubMed  Google Scholar 

  48. Rhee, S.G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    PubMed  Google Scholar 

  49. Veal, E.A., Day, A.M. & Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    CAS  PubMed  Google Scholar 

  50. Antunes, F. & Cadenas, E. Estimation of H2O2 gradients across biomembranes. FEBS Lett. 475, 121–126 (2000).

    CAS  PubMed  Google Scholar 

  51. Hawkins, B.J., Madesh, M., Kirkpatrick, C.J. & Fisher, A.B. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell 18, 2002–2012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schoneich, C. & Sharov, V.S. Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 41, 1507–1520 (2006).

    PubMed  Google Scholar 

  53. Sethuraman, M. et al. Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic. Biol. Med. 42, 823–829 (2007).

    CAS  PubMed  Google Scholar 

  54. Baty, J.W., Hampton, M.B. & Winterbourn, C.C. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem. J. 389, 785–795 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Leichert, L.I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA published online, doi:10.1073/pnas.0707723105 (14 February 2008).

  56. Sharov, V.S., Dremina, E.S., Galeva, N.A., Williams, T.D. & Schoneich, C. Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: selective protein oxidation during biological aging. Biochem. J. 394, 605–615 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao, Y. et al. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35, 2767–2787 (1996).

    CAS  PubMed  Google Scholar 

  58. Adachi, T. et al. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 279, 29857–29862 (2004).

    CAS  PubMed  Google Scholar 

  59. Zheng, L. et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J. Biol. Chem. 280, 38–47 (2005).

    CAS  PubMed  Google Scholar 

  60. Tyurina, Y.Y., Tyurin, V.A., Epperly, M.W., Greenberger, J.S. & Kagan, V.E. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic. Biol. Med. 44, 299–314 (2008).

    CAS  PubMed  Google Scholar 

  61. Davies, S.S. et al. Quantification of dinor, dihydro metabolites of F2-isoprostanes in urine by liquid chromatography/tandem mass spectrometry. Anal. Biochem. 348, 185–191 (2006).

    CAS  PubMed  Google Scholar 

  62. Esterbauer, H., Schaur, R.J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonanldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    CAS  PubMed  Google Scholar 

  63. West, J.D. & Marnett, L.J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem. Res. Toxicol. 19, 173–194 (2006).

    CAS  PubMed  Google Scholar 

  64. Vila, A. et al. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem. Res. Toxicol. 21, 432–444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995–1022 (2007).

    CAS  PubMed  Google Scholar 

  66. Bonini, M.G., Rota, C., Tomasi, A. & Mason, R.P. The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic. Biol. Med. 40, 968–975 (2006).

    CAS  PubMed  Google Scholar 

  67. Tarpey, M.M. & Fridovich, I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ. Res. 89, 224–236 (2001).

    CAS  PubMed  Google Scholar 

  68. Burkitt, M.J. & Wardman, P. Cytochrome c is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem. Biophys. Res. Commun. 282, 329–333 (2001).

    CAS  PubMed  Google Scholar 

  69. Miller, E.W. & Chang, C.J. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr. Opin. Chem. Biol. 11, 620–625 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kenmoku, S., Urano, Y., Kojima, H. & Nagano, T. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007).

    CAS  PubMed  Google Scholar 

  71. Zhao, H. et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci. USA 102, 5727–5732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zielonka, J., Vasquez-Vivar, J. & Kalyanaraman, B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat. Protoc. 3, 8–21 (2008).

    CAS  PubMed  Google Scholar 

  73. Bowry, V.W., Ingold, K.U. & Stocker, R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J. 288, 341–344 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Winterbourn, C.C. Superoxide as an intracellular radical sink. Free Radic. Biol. Med. 14, 85–90 (1993).

    CAS  PubMed  Google Scholar 

  75. Sturgeon, B.E. et al. The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis. J. Biol. Chem. 273, 30116–30121 (1998).

    CAS  PubMed  Google Scholar 

  76. Cuddihy, S.L., Parker, A., Harwood, D.T., Vissers, M.C. & Winterbourn, C.C. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic. Biol. Med. 44, 1637–1644 (2008).

    CAS  PubMed  Google Scholar 

  77. Fessel, J.P., Porter, N.A., Moore, K.P., Sheller, J.R. & Roberts, L.J. II. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl. Acad. Sci. USA 99, 16713–16718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Galati, G. & O'Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37, 287–303 (2004).

    CAS  PubMed  Google Scholar 

  79. Roos, D. & Winterbourn, C.C. Lethal weapons (perspective). Science 296, 669–671 (2002).

    CAS  PubMed  Google Scholar 

  80. Peskin, A.V. et al. The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885–11892 (2007).

    CAS  PubMed  Google Scholar 

  81. Denu, J.M. & Tanner, K.G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).

    CAS  PubMed  Google Scholar 

  82. Sohn, J. & Rudolph, J. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 42, 10060–10070 (2003).

    CAS  PubMed  Google Scholar 

  83. Lancaster, J.R. Jr. Diffusion of free nitric oxide. Methods Enzymol. 268, 31–50 (1996).

    CAS  PubMed  Google Scholar 

  84. Ford, E., Hughes, M.N. & Wardman, P. Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic. Biol. Med. 32, 1314–1323 (2002).

    CAS  PubMed  Google Scholar 

  85. Pattison, D.I. & Davies, M.J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464 (2001).

    CAS  PubMed  Google Scholar 

  86. Kissner, R., Nauser, T., Bugnon, P., Lye, P.G. & Koppenol, W.H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10, 1285–1292 (1997).

    CAS  PubMed  Google Scholar 

  87. Buettner, G.R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543 (1993).

    CAS  PubMed  Google Scholar 

  88. Bartberger, M.D. et al. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc. Natl. Acad. Sci. USA 99, 10958–10963 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Peskin, A.V. & Winterbourn, C.C. Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione. Free Radic. Biol. Med. 35, 1252–1260 (2003).

    CAS  PubMed  Google Scholar 

  90. Storz, G., Tartaglia, L.A. & Ames, B.N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194 (1990).

    CAS  PubMed  Google Scholar 

  91. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998); comment 279, 1655–1656 (1998).

    CAS  PubMed  Google Scholar 

  92. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).

    CAS  PubMed  Google Scholar 

  93. Toledano, M.B. et al. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897–909 (1994).

    CAS  PubMed  Google Scholar 

  94. Aslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96, 6161–6165 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liochev, S.I. & Fridovich, I. The role of O2·− in the production of OH·: in vitro and in vivo. Free Radic. Biol. Med. 16, 29–33 (1994).

    CAS  PubMed  Google Scholar 

  96. Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003).

    CAS  PubMed  Google Scholar 

  97. Brown, O.R. & Yein, F. Dihydroxyacid dehydratase: the site of hyperbaric oxygen poisoning in branch-chain amino acid biosynthesis. Biochem. Biophys. Res. Commun. 85, 1219–1224 (1978).

    CAS  PubMed  Google Scholar 

  98. Gardner, P.R. & Fridovich, I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333 (1991).

    CAS  PubMed  Google Scholar 

  99. Kuo, C.F., Mashino, T. & Fridovich, I. Dihydroxyisovalerate dehydratase: a superoxide sensitive enzyme. J. Biol. Chem. 262, 4724–4727 (1987).

    CAS  PubMed  Google Scholar 

  100. Flint, D.H., Tuminello, J.F. & Emptage, M.H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993).

    CAS  PubMed  Google Scholar 

  101. Jang, S. & Imlay, J.A. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J. Biol. Chem. 282, 929–937 (2007).

    CAS  PubMed  Google Scholar 

  102. Keyer, K. & Imlay, J.A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA 93, 13635–13640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Srinivasan, C., Liba, A., Imlay, J.A., Valentine, J.S. & Gralla, E.B. Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J. Biol. Chem. 275, 29187–29192 (2000).

    CAS  PubMed  Google Scholar 

  104. Pomposiello, P.J. & Demple, B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19, 109–114 (2001).

    CAS  PubMed  Google Scholar 

  105. Miller, E.W., Tulyathan, O., Isacoff, E.Y. & Chang, C.J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    CAS  PubMed  Google Scholar 

  106. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Health Research Council of New Zealand. I am grateful to M. Hampton and T. Kettle for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine C Winterbourn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winterbourn, C. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4, 278–286 (2008). https://doi.org/10.1038/nchembio.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing