Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction

Abstract

Regulation of chromatin structure involves histone posttranslational modifications that can modulate intrinsic properties of the chromatin fiber to change the chromatin state. We used chemically defined nucleosome arrays to demonstrate that H2B ubiquitylation (uH2B), a modification associated with transcription, interferes with chromatin compaction and leads to an open and biochemically accessible fiber conformation. Notably, these effects were specific for ubiquitin, as compaction of chromatin modified with a similar ubiquitin-sized protein, Hub1, was only weakly affected. Applying a fluorescence-based method, we found that uH2B acts through a mechanism distinct from H4 tail acetylation, a modification known to disrupt chromatin folding. Finally, incorporation of both uH2B and acetylated H4 resulted in synergistic inhibition of higher-order chromatin structure formation, possibly a result of their distinct modes of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H2B ubiquitylation impairs fiber folding.
Figure 2: H2B ubiquitylation increases chromatin accessibility in vitro and in vivo.
Figure 3: A fluorescence method to monitor chromatin fiber folding reveals conformational heterogeneity at intermediate chromatin fiber compaction.
Figure 4: uH2B and acH4 have distinct effects on fiber compaction and higher-order structure formation.
Figure 5: Fiber decompaction is a specific property of the ubiquitin protein.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  2. Poirier, M.G., Bussiek, M., Langowski, J. & Widom, J. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786 (2008).

    Article  CAS  Google Scholar 

  3. Kruithof, M. et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat. Struct. Mol. Biol. 16, 534–540 (2009).

    Article  CAS  Google Scholar 

  4. Poirier, M.G., Oh, E., Tims, H.S. & Widom, J. Dynamics and function of compact nucleosome arrays. Nat. Struct. Mol. Biol. 16, 938–944 (2009).

    Article  CAS  Google Scholar 

  5. Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  Google Scholar 

  6. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  7. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  8. Chodaparambil, J.V. et al. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat. Struct. Mol. Biol. 14, 1105–1107 (2007).

    Article  CAS  Google Scholar 

  9. Schalch, T., Duda, S., Sargent, D.F. & Richmond, T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  Google Scholar 

  10. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  11. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  12. Robinson, P.J. et al. 30 nm chromatin fibre decompaction requires both H4–K16 acetylation and linker histone eviction. J. Mol. Biol. 381, 816–825 (2008).

    Article  CAS  Google Scholar 

  13. Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J.C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997).

    Article  CAS  Google Scholar 

  14. West, M.H. & Bonner, W.M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 8, 4671–4680 (1980).

    Article  CAS  Google Scholar 

  15. Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).

    Article  CAS  Google Scholar 

  16. Minsky, N. et al. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat. Cell Biol. 10, 483–488 (2008).

    Article  CAS  Google Scholar 

  17. Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    Article  CAS  Google Scholar 

  18. Zhu, B. et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 20, 601–611 (2005).

    Article  CAS  Google Scholar 

  19. Shema, E. et al. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22, 2664–2676 (2008).

    Article  CAS  Google Scholar 

  20. Chandrasekharan, M.B., Huang, F. & Sun, Z.W. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. USA 106, 16686–16691 (2009).

    Article  CAS  Google Scholar 

  21. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006).

    Article  CAS  Google Scholar 

  22. Fleming, A.B., Kao, C.F., Hillyer, C., Pikaart, M. & Osley, M.A. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 31, 57–66 (2008).

    Article  CAS  Google Scholar 

  23. Robzyk, K., Recht, J. & Osley, M.A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    Article  CAS  Google Scholar 

  24. Sun, Z.W. & Allis, C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  Google Scholar 

  25. Sridhar, V.V. et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447, 735–738 (2007).

    Article  CAS  Google Scholar 

  26. Chatterjee, C., McGinty, R.K., Fierz, B. & Muir, T.W. Disulfide directed histone ubiquitylation reveals plasticity in hDot1L stimulation. Nat. Chem. Biol. 6, 267–269 (2010).

    Article  CAS  Google Scholar 

  27. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  28. McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R.G. & Muir, T.W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    Article  CAS  Google Scholar 

  29. Henikoff, S., Henikoff, J.G., Sakai, A., Loeb, G.B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2009).

    Article  CAS  Google Scholar 

  30. Nickel, B.E., Allis, C.D. & Davie, J.R. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28, 958–963 (1989).

    Article  CAS  Google Scholar 

  31. Delcuve, G.P. & Davie, J.R. Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes. Biochem. J. 263, 179–186 (1989).

    Article  CAS  Google Scholar 

  32. Runnels, L.W. & Scarlata, S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69, 1569–1583 (1995).

    Article  CAS  Google Scholar 

  33. Bergström, F., Hagglof, P., Karolin, J., Ny, T. & Johansson, L.B. The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc. Natl. Acad. Sci. USA 96, 12477–12481 (1999).

    Article  Google Scholar 

  34. Gautier, I. et al. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys. J. 80, 3000–3008 (2001).

    Article  CAS  Google Scholar 

  35. Thaler, C., Koushik, S.V., Puhl, H.L. III, Blank, P.S. & Vogel, S.S. Structural rearrangement of CaMKIIalpha catalytic domains encodes activation. Proc. Natl. Acad. Sci. USA 106, 6369–6374 (2009).

    Article  CAS  Google Scholar 

  36. Kawski, A. Excitation energy transfer and its manifestation in isotropic media. Photochem. Photobiol. 38, 487–508 (1983).

    Article  CAS  Google Scholar 

  37. Woodcock, C.L., Grigoryev, S.A., Horowitz, R.A. & Whitaker, N. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc. Natl. Acad. Sci. USA 90, 9021–9025 (1993).

    Article  CAS  Google Scholar 

  38. Knox, R. Theory of polarization quenching by excitation transfer. Physica 39, 361–386 (1968).

    Article  CAS  Google Scholar 

  39. Woodcock, C.L. & Horowitz, R.A. Chromatin organization re-viewed. Trends Cell Biol. 5, 272–277 (1995).

    Article  CAS  Google Scholar 

  40. Kurdistani, S.K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    Article  CAS  Google Scholar 

  41. Koch, C.M. et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17, 691–707 (2007).

    Article  CAS  Google Scholar 

  42. Dittmar, G.A., Wilkinson, C.R., Jedrzejewski, P.T. & Finley, D. Role of a ubiquitin-like modification in polarized morphogenesis. Science 295, 2442–2446 (2002).

    Article  CAS  Google Scholar 

  43. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  44. Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat. Struct. Mol. Biol. 15, 1122–1124 (2008).

    Article  CAS  Google Scholar 

  45. Jason, L.J.M., Moore, S.C., Ausio, J. & Lindsey, G. Magnesium-dependent association and folding of oligonucleosomes reconstituted with ubiquitinated H2A. J. Biol. Chem. 276, 14597–14601 (2001).

    Article  CAS  Google Scholar 

  46. Demeler, B. UltraScan version 9.9 rev 863. A Comprehensive Data Analysis Software Package for Analytical Ultracentrifugation Experiments (http://www.ultrascan.uthscsa.edu, The University of Texas Health Science Center at San Antonio, Department of Biochemistry, 2009).

  47. Demeler, B. & van Holde, K.E. Sedimentation velocity analysis of highly heterogeneous systems. Anal. Biochem. 335, 279–288 (2004).

    Article  CAS  Google Scholar 

  48. McGinty, R.K. et al. Structure activity analysis of semisynthetic nucleosomes: Mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem. Biol. 4, 958–968 (2009).

    Article  CAS  Google Scholar 

  49. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  Google Scholar 

  50. Ramelot, T.A. et al. Solution structure of the yeast ubiquitin-like modifier protein Hub1. J. Struct. Funct. Genomics 4, 25–30 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Deng and H. Yu (The Rockefeller University) for mass spectrometric analysis of histones, J. Kim and R. Subramanian for assistance with preparing hDot1L, K. Chiang for help with DNA preparation, H. Yang and D. Montiel for help with fluorescence lifetime measurements and A. Ruthenburg, R. Sadeh, P. Moyle and M. Vila-Perelló for assistance with cell experiments and discussions. This work was funded by the US National Institutes of Health (grant number RC2CA148354) and the Starr Cancer Consortium. B.F. was funded by the Swiss National Science Foundation (Nr. PBBSA-118839 and PA00P3_129130/1) and by the Novartis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.F. and T.W.M. designed the experiments. B.F. performed the biophysical chromatin experiments. B.F. and C.C. performed the methyltransferase assays and cell experiments. B.F., C.C., R.K.M. and M.B.-D. prepared new reagents. B.F., D.P.R. and T.W.M. analyzed the experimental data, and B.F. and T.W.M. wrote the paper.

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–11 (PDF 1538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fierz, B., Chatterjee, C., McGinty, R. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7, 113–119 (2011). https://doi.org/10.1038/nchembio.501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing