Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

DNA damage tolerance: when it's OK to make mistakes

Abstract

Mutations can be beneficial under conditions in which genetic diversity is advantageous, such as somatic hypermutation and antibody generation, but they can also be lethal when they disrupt basic cellular processes or cause uncontrolled proliferation and cancer. Mutations arise from inaccurate processing of lesions generated by endogenous and exogenous DNA damaging agents, and the genome is particularly vulnerable to such damage during S phase. In this phase of the cell cycle, many lesions in the DNA template block replication. Such lesions must be bypassed in order to preserve fork stability and to ensure completion of DNA replication. Lesion bypass is carried out by a set of error-prone and error-free processes collectively referred to as DNA damage tolerance mechanisms. Here, we discuss how two types of DNA damage tolerance, translesion synthesis and template switching, are regulated at stalled replication forks by ubiquitination of PCNA, and the conditions under which they occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of DNA damage tolerance pathways and PCNA ubiquitination.
Figure 2: Translesion synthesis pathway.
Figure 3: Ubiquitin conjugation pathway and enzymes involved in PCNA ubiquitination.
Figure 4: Domain architecture and functions of the E3 ubiquitin ligase Rad5 and its putative orthologs SHPRH and HLTF.
Figure 5: Coordinated activation of PCNA ubiquitination and the ATR-dependent checkpoint response at a stalled replication fork.

Similar content being viewed by others

References

  1. Friedberg, E.C. Suffering in silence: the tolerance of DNA damage. Nat. Rev. Mol. Cell Biol. 6, 943–953 (2005).

    CAS  PubMed  Google Scholar 

  2. Cimprich, K.A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nyberg, K.A., Michelson, R.J., Putnam, C.W. & Weinert, T.A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    CAS  PubMed  Google Scholar 

  4. Paulsen, R.D. & Cimprich, K.A. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.) 6, 953–966 (2007).

    CAS  Google Scholar 

  5. Andersen, P.L., Xu, F. & Xiao, W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18, 162–173 (2008).

    CAS  PubMed  Google Scholar 

  6. Moldovan, G.L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    CAS  PubMed  Google Scholar 

  7. McCulloch, S.D. & Kunkel, T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    CAS  PubMed  Google Scholar 

  8. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 104, 15591–15598 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Prakash, S., Johnson, R.E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

    CAS  PubMed  Google Scholar 

  10. Friedberg, E.C., Lehmann, A.R. & Fuchs, R.P. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell 18, 499–505 (2005).

    CAS  PubMed  Google Scholar 

  11. Fujii, S. & Fuchs, R.P. Interplay among replicative and specialized DNA polymerases determines failure or success of translesion synthesis pathways. J. Mol. Biol. 372, 883–893 (2007).

    CAS  PubMed  Google Scholar 

  12. Fujii, S. & Fuchs, R.P. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J. 23, 4342–4352 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawrence, C.W. & Christensen, R. UV mutagenesis in radiation-sensitive strains of yeast. Genetics 82, 207–232 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lemontt, J.F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68, 21–33 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, R.E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283, 1001–1004 (1999).

    CAS  PubMed  Google Scholar 

  16. McCulloch, S.D. et al. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428, 97–100 (2004).

    CAS  PubMed  Google Scholar 

  17. Zhang, Y. et al. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Res. 28, 4138–4146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogi, T., Shinkai, Y., Tanaka, K. & Ohmori, H. Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc. Natl. Acad. Sci. USA 99, 15548–15553 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999).

    CAS  PubMed  Google Scholar 

  20. Broomfield, S., Chow, B.L. & Xiao, W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. USA 95, 5678–5683 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Broomfield, S., Hryciw, T. & Xiao, W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486, 167–184 (2001).

    CAS  PubMed  Google Scholar 

  22. Chiu, R.K. et al. Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet. 2, e116 (2006).

    PubMed  PubMed Central  Google Scholar 

  23. Xiao, W., Chow, B.L., Broomfield, S. & Hanna, M. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155, 1633–1641 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Higgins, N.P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).

    CAS  PubMed  Google Scholar 

  25. Lehmann, A.R. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 66, 319–337 (1972).

    CAS  PubMed  Google Scholar 

  26. Zhang, H. & Lawrence, C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl. Acad. Sci. USA 102, 15954–15959 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujiwara, Y. & Tatsumi, M. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat. Res. 37, 91–110 (1976).

    CAS  PubMed  Google Scholar 

  28. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    CAS  PubMed  Google Scholar 

  29. Lopes, M., Foiani, M. & Sogo, J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    CAS  PubMed  Google Scholar 

  30. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    CAS  PubMed  Google Scholar 

  31. Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    CAS  PubMed  Google Scholar 

  32. Frampton, J. et al. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol. Biol. Cell 17, 2976–2985 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stelter, P. & Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  34. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  35. Gohler, T., Munoz, I.M., Rouse, J. & Blow, J.J. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst.) 7, 775–787 (2008).

    CAS  Google Scholar 

  36. Chang, D.J., Lupardus, P.J. & Cimprich, K.A. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J. Biol. Chem. 281, 32081–32088 (2006).

    CAS  PubMed  Google Scholar 

  37. Leach, C.A. & Michael, W.M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol. 171, 947–954 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Watanabe, K. et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    CAS  PubMed  Google Scholar 

  40. Unk, I. et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl. Acad. Sci. USA 105, 3768–3773 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Unk, I. et al. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl. Acad. Sci. USA 103, 18107–18112 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Motegi, A. et al. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol. 175, 703–708 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. USA 105, 12411–12416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bi, X. et al. Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol. Cell. Biol. 26, 3527–3540 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    CAS  PubMed  Google Scholar 

  46. Guo, C., Tang, T.S., Bienko, M., Dikic, I. & Friedberg, E.C. Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance. J. Biol. Chem. 283, 4658–4664 (2008).

    CAS  PubMed  Google Scholar 

  47. Plosky, B.S. et al. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J. 25, 2847–2855 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Garg, P. & Burgers, P.M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc. Natl. Acad. Sci. USA 102, 18361–18366 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Haracska, L., Unk, I., Prakash, L. & Prakash, S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 103, 6477–6482 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sabbioneda, S. et al. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol. Biol. Cell 19, 5193–5202 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl. Acad. Sci. USA 105, 16125–16130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Waters, L.S. & Walker, G.C. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc. Natl. Acad. Sci. USA 103, 8971–8976 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Masuda, Y. & Kamiya, K. Role of single-stranded DNA in targeting REV1 to primer termini. J. Biol. Chem. 281, 24314–24321 (2006).

    CAS  PubMed  Google Scholar 

  54. Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair (Amst.) 3, 1503–1514 (2004).

    CAS  Google Scholar 

  55. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    PubMed  Google Scholar 

  56. Ulrich, H.D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, T.T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  58. Gangavarapu, V. et al. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 7783–7790 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pages, V. et al. Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180, 73–82 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, S., Davies, A.A., Sagan, D. & Ulrich, H.D. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 33, 5878–5886 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Blastyak, A. et al. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28, 167–175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Constantinou, A. et al. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1, 80–84 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Karow, J.K., Constantinou, A., Li, J.L., West, S.C. & Hickson, I.D. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc. Natl. Acad. Sci. USA 97, 6504–6508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Machwe, A., Xiao, L., Groden, J. & Orren, D.K. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45, 13939–13946 (2006).

    CAS  PubMed  Google Scholar 

  66. Ralf, C., Hickson, I.D. & Wu, L. The Bloom's syndrome helicase can promote the regression of a model replication fork. J. Biol. Chem. 281, 22839–22846 (2006).

    CAS  PubMed  Google Scholar 

  67. Gari, K., Decaillet, C., Stasiak, A.Z., Stasiak, A. & Constantinou, A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29, 141–148 (2008).

    CAS  PubMed  Google Scholar 

  68. Gari, K., Decaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. USA 105, 16107–16112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun, W. et al. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 32, 118–128 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kanagaraj, R., Saydam, N., Garcia, P.L., Zheng, L. & Janscak, P. Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34, 5217–5231 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bienz, M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem. Sci. 31, 35–40 (2006).

    CAS  PubMed  Google Scholar 

  72. Peng, J. & Wysocka, J. It takes a PHD to SUMO. Trends Biochem. Sci. 33, 191–194 (2008).

    CAS  PubMed  Google Scholar 

  73. Iyer, L.M., Babu, M.M. & Aravind, L. The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle 5, 775–782 (2006).

    CAS  PubMed  Google Scholar 

  74. Davies, A.A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H.D. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol. Cell 29, 625–636 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pacek, M. & Walter, J.C. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23, 3667–3676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C. & Cimprich, K.A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360–23365 (1997).

    CAS  PubMed  Google Scholar 

  78. Tsuji, Y. et al. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells 13, 343–354 (2008).

    CAS  PubMed  Google Scholar 

  79. Zou, L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev. 21, 879–885 (2007).

    CAS  PubMed  Google Scholar 

  80. MacDougall, C.A., Byun, T.S., Van, C., Yee, M.C. & Cimprich, K.A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, X.H., Shiotani, B., Classon, M. & Zou, L. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147–1152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sabbioneda, S. et al. The 9–1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. J. Biol. Chem. 280, 38657–38665 (2005).

    CAS  PubMed  Google Scholar 

  83. Hirano, Y. & Sugimoto, K. ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break. Curr. Biol. 16, 586–590 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kai, M. & Wang, T.S. Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev. 17, 64–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  86. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    CAS  PubMed  Google Scholar 

  87. Kim, H.T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375–17386 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Wandless, A. Hahn, J.-R. Lin and M. Zeman for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlene A Cimprich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Cimprich, K. DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol 5, 82–90 (2009). https://doi.org/10.1038/nchembio.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing