Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins

Abstract

The ubiquitin-like protein SUMO-1 (small ubiquitin-related modifier 1) is covalently attached to substrate proteins by ligases and cleaved by isopeptidases. Yeast has two SUMO-1-deconjugating enzymes, Ulp1 and Ulp2, which are located at nuclear pores and in the nucleoplasm, respectively. Here we show that the catalytic C-domain of Ulp1 must be excluded from the nucleoplasm for cell viability. This is achieved by the noncatalytic N-domain, which tethers Ulp1 to the nuclear pores. The bulk of cellular Ulp1 is not associated with nucleoporins but instead associates with three karyopherins (Pse1, Kap95 and Kap60), in a complex that is not dissociated by RanGTP in vitro. The Ulp1 N-domain has two distinct binding sites for Pse1 and Kap95/Kap60, both of which are required for anchoring to the nuclear pore complex. We propose that Ulp1 is tethered to the nuclear pores by a Ran-insensitive interaction with karyopherins associated with nucleoporins. This location could allow Ulp1 to remove SUMO-1 from sumoylated cargo proteins during their passage through the nuclear pore channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear location of Ulp1 is dominant lethal.
Figure 2: Ulp1N has nuclear pore targeting activity.
Figure 3: Nucleoporins target Ulp1C to nuclear pores and restore Ulp1 function.
Figure 4: Ulp1 remains located at the nuclear envelope in nup42Δ cells.
Figure 5: Ulp1N forms a RanGTP-insensitive complex with karyopherins.
Figure 6: Dissociation of Ulp1 from the nuclear pores.
Figure 7: The predicted coiled-coil domain in Ulp1N has NES activity.

Similar content being viewed by others

References

  1. Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson, E. S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hochstrasser, M. All in the ubiquitin family. Science 289, 563–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Melchior, F. SUMO-1 — nonclassical ubiquitin. Annu. Rev. Cell. Dev. Biol. 16, 591–626 (2000).

    Article  CAS  Google Scholar 

  6. Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA 94, 3736–3741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Li, S. J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gadal, O. et al. Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21, 3405–3415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galani, K., Grosshans, H., Deinert, K., Hurt, E. C. & Simos, G. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 23, 6889–6898 (2001).

    Article  Google Scholar 

  15. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi, Y., Mizoi, J., Toh-E, A. & Kikuchi, Y. Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J. Biochem. (Tokyo) 128, 723–725 (2000).

    Article  CAS  Google Scholar 

  17. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr255p. EMBO J. 18, 5761–5777 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simos, G. et al. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15, 5437–5448 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol. 15, 607–660 (1999).

    Article  PubMed  Google Scholar 

  20. Künzler, M., Gerstberger, T., Stutz, F., Bischoff, F. R. & Hurt. E. Yeast Ran-binding protein 1 (Yrb1) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPO1)-dependent pathway. Mol. Cell. Biol. 20, 4295–4308 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schlenstedt, G. et al. Yrb4p, a yeast Ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J. 16, 6237–6249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ho, J. H., Kallstrom, G. & Johnson, A. W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J. Cell Biol. 151, 1057–1066 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neville, M. & Rosbash, M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J. 18, 3746–3756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor, D. L., Ho, J. C., Oliver, A. & Watts, F. Z. Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J. Cell Sci. 115, 1113–1122 (2002).

    CAS  PubMed  Google Scholar 

  25. Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H., Saitoh, H. & Matunis, M. J. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22, 6498–6508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah, S., Tugendreich, S. & Forbes, D. Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J. Cell Biol. 141, 31–49 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bassler, J. et al. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol. Cell 8, 517–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hellmuth, K. et al. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18, 6374–6386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siniossoglou, S. et al. Structure and assembly of the Nup84p complex. J. Cell Biol. 149, 41–54 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seedorf, M. & Silver, P. A. Importin/karyopherin protein family members required for mRNA export from the nucleus. Proc. Natl Acad. Sci. USA 94, 8590–8595 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.H. was supported by grants from the Deutsche Forschungsgemeinschaft (Leibniz-Programm) and Fonds der Chemischen Industrie. V.G.P. is the recipient of a long-term fellowship from the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables

Table 1: Yeast strains (DOC 28 kb)

Table 2: Plasmids and constructions

Legend to supplementary Figure 1.

Supplementary Figure

Fig. 1. Levels of Ulp1-GFP are not altered upon ovexpression of Yrb4ΔN or in the pse1-1 strain when shifted to restrictive temperature. (JPG 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panse, V., Küster, B., Gerstberger, T. et al. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 5, 21–27 (2003). https://doi.org/10.1038/ncb893

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb893

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing