Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis

Abstract

Ezrin, Radixin and Moesin (ERM) proteins are thought to constitute a bridge between the actin cytoskeleton and the plasma membrane (PM). Here we report a genetic analysis of Dmoesin, the sole member of the ERM family in Drosophila. We show that Dmoesin is required during oogenesis for anchoring microfilaments to the oocyte cortex. Alteration of the actin cytoskeleton resulting from Dmoesin mutations impairs the localization of maternal determinants, thus disrupting antero–posterior polarity. This study also demonstrates the requirement of Dmoesin for the specific organization of cortical microfilaments in nurse cells and, consequently, mutations in Dmoesin produce severe defects in cell shape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dmoesin is the Drosophila orthologue of the three mammalian ERM proteins.
Figure 2: Genomic localization of Dmoe mutations and their effects on early embryogenesis.
Figure 3: Mutations in Dmoesin affect the posterior localization of maternal determinants.
Figure 4: Dmoe mutations do not disrupt microtubule organization in the oocyte.
Figure 5: Dmoesin is required for anchoring F-actin filaments to the plasma membrane.
Figure 6: Thr 559 mutations alter the localization and function of Dmoesin in the oocyte.
Figure 7: Dmoe controls microfilament organization in the cortical F-actin mesh of nurse cells.
Figure 8: Dmoesin-Thr 559 mutants disrupt microfilament organization in nurse cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lee, E., Pang, K. & Knecht, D. The regulation of actin polymerization and cross-linking in Dictyostelium. Biochim. Biophys. Acta 1525, 217–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (Ezrin/Radixin/Moesin) proteins. J. Biol. Chem. 274, 34507–34510 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bretscher, A., Chambers, D., Nguyen, R. & Reczek, D. Erm-merlin and ebp50 protein families in plasma membrane organization and function. Annu. Rev. Cell Dev. Biol. 16, 113–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the Ezrin protein family. J. Cell Biol. 126, 1445–1453 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Tsukita, S., Oishi, K., Sato, N., Sagara, J. & Kawai, A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391–401 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6, 1425–1436 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein Moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa, H. et al. Structural conversion between open and closed forms of Radixin: low- angle shadowing electron microscopy. J. Mol. Biol. 310, 973–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of Moesin by thrombin activation of human platelets. J. Biol. Chem. 270, 31377–31385 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi, K. et al. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125, 1371–1384 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lamb, R. F. et al. Essential functions of Ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of Ezrin or Radixin in Moesin gene knockout. J. Biol. Chem. 274, 2315–2321 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of Moesin and the neurofibromatosis 2 tumour suppressor, merlin. J. Cell Biol. 133, 843–852 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Bourbon, H. M. et al. A P-insertion screen identifying novel X-linked essential genes in Drosophila. Mech. Dev. 110, 71–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. van Eeden, F. & St Johnston, D. The polarisation of the anterior–posterior and dorsal–ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Baker, N. E. Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103, 289–298 (1988).

    CAS  PubMed  Google Scholar 

  19. Hay, B., Jan, L. Y. & Jan, Y. N. Localization of Vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109, 425–433 (1990).

    CAS  PubMed  Google Scholar 

  20. Gavis, E. R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Ephrussi, A., Dickinson, L. K. & Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Ephrussi, A. & Lehmann, R. Induction of germ cell formation by oskar. Nature 358, 387–392 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Kim-Ha, J., Smith, J. L. & Macdonald, P. M. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23–35 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Theurkauf, W. E., Smiley, S., Wong, M. L. & Alberts, B. M. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936 (1992).

    CAS  PubMed  Google Scholar 

  26. Theurkauf, W. E. Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265, 2093–2096 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Manseau, L., Calley, J. & Phan, H. Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116 (1996).

    CAS  PubMed  Google Scholar 

  28. Clark, I. E., Jan, L. Y. & Jan, Y. N. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124, 461–470 (1997).

    CAS  PubMed  Google Scholar 

  29. Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L. Y. & Jan, Y. N. Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol 4, 289–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Brendza, R. P., Serbus, L. R., Duffy, J. B. & Saxton, W. M. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120–2122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robinson, D. N. & Cooley, L. Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu. Rev. Cell Dev. Biol. 13, 147–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. MacDougall, N. et al. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development 128, 665–673 (2001).

    CAS  PubMed  Google Scholar 

  33. Oshiro, N., Fukata, Y. & Kaibuchi, K. Phosphorylation of Moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem. 273, 34663–34666 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lantz, V. A., Clemens, S. E. & Miller, K. G. The actin cytoskeleton is required for maintenance of posterior pole plasm components in the Drosophila embryo. Mech. Dev. 85, 111–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Erdelyi, M., Michon, A. M., Guichet, A., Glotzer, J. B. & Ephrussi, A. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377, 524–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Baum, B., Li, W. & Perrimon, N. A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr. Biol. 10, 964–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).

    CAS  PubMed  Google Scholar 

  38. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of Ezrin/Radixin/Moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simons, P. C., Pietromonaco, S. F., Reczek, D., Bretscher, A. & Elias, L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem. Biophys. Res. Commun. 253, 561–565 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, L., Wong, T. Y., Lin, R. C. & Furthmayr, H. Replacement of threonine 558, a critical site of phosphorylation of Moesin in vivo, with aspartate activates F-actin binding of Moesin. Regulation by conformational change. J. Biol. Chem. 274, 12803–12810 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the Radixin FERM domain. EMBO J. 19, 4449–4462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of Ezrin correlates with its altered cellular distribution. J. Cell Biol. 151, 1067–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of Ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–Moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Payre, F., Vincent, A. & Carreno, S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Cohen, N. Dostatni, A. Ephrussi, P. Lasko, P. McDonald, P. Rorth, D. St Johnston, T. Schüpbach and M. van Doren for their generous gifts of biological materials, the Bloomington Stock Center for Drosophila stocks, M.L. Dumont for help with stock keeping, S. Carreno and I. Maridonneau-Parini for their help to C.P., J. Smith, L. Walzer and F. Roch for discussions and comments on the manuscript, and M. Erdélyi for sharing unpublished results and materials. This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Association pour la Recherche sur le Cancer (ARC; subvention number 5116). C.P. and I.D. were supported by Ministère de la Recherche et de l'Education, P.V. was supported by the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Payre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Figure S1 Cytoplasmic streaming (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polesello, C., Delon, I., Valenti, P. et al. Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4, 782–789 (2002). https://doi.org/10.1038/ncb856

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing