Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1

An Erratum to this article was published on 01 July 2002

Abstract

Cell death in higher organisms is negatively regulated by Inhibitor of Apoptosis Proteins (IAPs), which contain a ubiquitin ligase motif, but how ubiquitin-mediated protein degradation is regulated during apoptosis is poorly understood. Here, we report that Drosophila melanogaster IAP1 (DIAP1) auto-ubiquitination and degradation is actively regulated by Reaper (Rpr) and UBCD1. We show that Rpr, but not Hid (head involution defective), promotes significant DIAP1 degradation. Rpr-mediated DIAP1 degradation requires an intact DIAP1 RING domain. Among the mutations affecting ubiquitination, we found ubcD1, which suppresses rpr-induced apoptosis. UBCD1 and Rpr specifically bind to DIAP1 and stimulate DIAP1 auto-ubiquitination in vitro. Our results identify a novel function of Rpr in stimulating DIAP1 auto-ubiquitination through UBCD1, thereby promoting its degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of DIAP1 protein and diap1 enhancer trap in wing imaginal discs.
Figure 2: rpr induces post-transcriptional downregulation of DIAP1.
Figure 3: rpr induced DIAP1 degradation is dependent on the RING domain.
Figure 4: Mutation in ubcD1 dominantly suppresses cell killing induced by GMR-hid, GMR-rpr and GMR-diap1-RING.
Figure 5: Rpr and UBCD1 bind DIAP1 and promote DIAP1 auto-ubiquitination in vitro.
Figure 6: DIAP1 levels increase in ubcD1−/− clones.
Figure 7: ubcD1−/− adults have extra-sensory neurons (macrochaetes) in the scutellum.

Similar content being viewed by others

References

  1. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 685–687 (2000).

    Article  Google Scholar 

  3. Goyal, L. Cell death inhibition: keeping caspases in check. Cell 104, 805–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83,1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol. Cell 8, 95–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K. & Steller, H. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP proteins. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Verhagen, A. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Verhagen, A. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonise inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2001).

    Article  PubMed  Google Scholar 

  16. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, H. K. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin protein ligase and promotes in vitro monoubiquitination of caspase 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  18. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Blair, S. S. Mechnisms of compartment formation: evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development 119, 339–351 (1993).

    CAS  PubMed  Google Scholar 

  21. Clem, R. J., Fechneimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  23. Baker, N. E. & Yu, S. Y. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104, 699–708 (2000).

    Article  Google Scholar 

  24. Srinivasan, A. et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 5, 1004–1016 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, P. et al. The RING finger of DIAP1 is essential for regulating apoptosis. Nature Cell Biol. DOI: 10.1038/ncb799.

  28. Saville, K. J. & Belote, J. M. Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc. Natl Acad. Sci. USA 90, 8842–8846 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischer-Vize, J. A., Rubin, G. M. & Lehmann, R. The fat facets gene is required for Drosophila eye and embryo development. Development 116, 985–1000 (1992).

    CAS  PubMed  Google Scholar 

  30. Treier, M., Seufert, W. & Jentsch, S. Drosophila UbcD1 encodes a highly conserved ubiquitin conjugating enzyme involved in selective protein degradation. EMBO J. 11, 367–372 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cenci, G. et al. ubcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behaviour. Genes Dev. 11, 863–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Neufeld, T. P., Tang, A. H. & Rubin G. M. A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. Genetics 148, 277–286 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Matuschewski, K., Hauser, H. P., Treier, M. & Jentsch, S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem. 271, 2789–2794 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  37. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gaumer, S., Guenal, I., Brun, S., Theodore, L. & Mignotte, B. bcl-2 and bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 7, 804–814 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Baehrecke, E. H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ. 7, 1057–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, C. Y. et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell 6, 433–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang C., Lamblin, A. F., Steller H. & Thummel C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell 5, 445–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Tamm et. al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).

    CAS  PubMed  Google Scholar 

  44. White, K., Tahaoglu, E., Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, L. et al. Cooperative functions of the reaper and head involution defective genes in programmed cell death of Drosophila CNS midline cells. Proc. Natl Acad. Sci. USA 94, 5131–5136 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Calleja, M. & Morata, G. Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Cohen, B., Simcox, A. A. & Cohen, S. M. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 117, 597–608 (1993).

    CAS  PubMed  Google Scholar 

  50. Holley, C.L., Olson, M.R., Colon-Ramos, D.A. & Kornbluth S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. DOI: 10.1038/ncb798.

  51. Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nature Cell Biol. DOI: 10.1038/ncb794.

  52. Wing et al. Drosophila Morgue is a novel F box/ubiquitin conjugase domain protein important for grim-reaper-mediated apoptosis. Nature Cell Biol. DOI: 10.1038/ncb800.

  53. Yoo et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. DOI: 10.1038/ncb793.

Download references

Acknowledgements

We are grateful to M. Gatti, J. Fischer, B. Hay, S. Jentsch, P. Meier, B. Mignotte, G. Rubin and the Bloomington stock centre for providing stocks and reagents. We thank the Steller lab members for advice and criticism, R. Cagan and P. Meier for sharing results before publication, S. Shaham, S. Sampath and B. Mollereau for critically reading the manuscript, and R. Cisse and T. Gorenc for technical assistance. H.D.R. is a fellow of the Leukemia-Lymphoma Society. A.B. is supported by The Robert A. Welch Foundation, the MD Anderson Research Trust and the Bush Endowment for innovative Cancer Research. H.S. is an Investigator of the Howard Hughes Medical Institute. Part of this work was supported by National Institutes of Health grant RO1GM60124 and The Lady Davis Fellowship from the Technion Medical Faculty in Israel to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Steller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryoo, H., Bergmann, A., Gonen, H. et al. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4, 432–438 (2002). https://doi.org/10.1038/ncb795

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing