Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biogenesis of chromosome translocations

Abstract

Chromosome translocations are catastrophic genomic events and often play key roles in tumorigenesis. Yet the biogenesis of chromosome translocations is remarkably poorly understood. Recent work has delineated several distinct mechanistic steps in the formation of translocations, and it has become apparent that non-random spatial genome organization, DNA repair pathways and chromatin features, including histone marks and the dynamic motion of broken chromatin, are critical for determining translocation frequency and partner selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consequences of chromosome rearrangements.
Figure 2: Distinct phases in the biogenesis of a translocation.
Figure 3: Factors influencing distinct steps in the formation of chromosome translocations.

Similar content being viewed by others

References

  1. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–45 (2007).

    CAS  PubMed  Google Scholar 

  3. Meaburn, K. J., Misteli, T. & Soutoglou, E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol. 17, 80–90 (2007).

    CAS  PubMed  Google Scholar 

  4. Dudley, D. D., Chaudhuri, J., Bassing, C. H. & Alt, F. W. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv. Immunol. 86, 43–112 (2005).

    CAS  PubMed  Google Scholar 

  5. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lukas, J., Lukas, C. & Bartek, J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169 (2011).

    CAS  PubMed  Google Scholar 

  7. Lukas, C., Bartek, J. & Lukas, J. Imaging of protein movement induced by chromosomal breakage: tiny 'local' lesions pose great 'global' challenges. Chromosoma 114, 146–154 (2005).

    CAS  PubMed  Google Scholar 

  8. Kaye, J. A. et al. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14, 2096–2106 (2004).

    CAS  PubMed  Google Scholar 

  9. Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14, 2107–2112 (2004).

    CAS  PubMed  Google Scholar 

  10. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675–682 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jakob, B., Splinter, J., Durante, M. & Taucher-Scholz, G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl Acad. Sci. USA 106, 3172–3177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).

    CAS  PubMed  Google Scholar 

  14. Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303, 92–95 (2004).

    CAS  PubMed  Google Scholar 

  15. Krawczyk, P. M. et al. Chromatin mobility is increased at sites of DNA double-strand breaks. J. Cell Sci. 125, 2127–2133 (2012).

    CAS  PubMed  Google Scholar 

  16. Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).

    CAS  PubMed  Google Scholar 

  17. Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14, 502–509 (2012).

    CAS  PubMed  Google Scholar 

  18. Dion, V., Kalck, V., Seeber, A., Schleker, T. & Gasser, S. M. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984–991 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Seeber, A., Dion, V. & Gasser, S. M. Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev. 27, 1999–2008 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    CAS  PubMed  Google Scholar 

  22. Roukos, V., Burman, B. & Misteli, T. The cellular etiology of chromosome translocations. Curr. Opin. Cell Biol. 25, 357–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Misteli, T. Higher-order genome organization in human disease. Cold Spring Harb. Persp. Biol. 2, a000794 (2010).

    Google Scholar 

  24. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    CAS  PubMed  Google Scholar 

  25. Bickmore, W. A. & Teague, P. Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res. 10, 707–715 (2002).

    CAS  PubMed  Google Scholar 

  26. Parada, L. A., McQueen, P. G., Munson, P. J. & Misteli, T. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol. 12, 1692–1697 (2002).

    CAS  PubMed  Google Scholar 

  27. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138 (2006).

    PubMed  PubMed Central  Google Scholar 

  28. Neves, H., Ramos, C., da Silva, M. G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93, 1197–1207 (1999).

    CAS  PubMed  Google Scholar 

  29. Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34, 287–291 (2003).

    CAS  PubMed  Google Scholar 

  30. Lukasova, E. et al. Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum. Genet. 100, 525–535 (1997).

    CAS  PubMed  Google Scholar 

  31. Roccato, E. et al. Proximity of TPR and NTRK1 rearranging loci in human thyrocytes. Cancer Res. 65, 2572–6576 (2005).

    CAS  PubMed  Google Scholar 

  32. Stahl, A. et al. Structural basis for Robertsonian translocations in man: association of ribosomal genes in the nucleolar fibrillar center in meiotic spermatocytes and oocytes. Proc. Natl Acad. Sci. USA 80, 5946–5950 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikiforov, Y. E., Koshoffer, A., Nikiforova, M., Stringer, J. & Fagin, J. A. Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene 18, 6330–6334 (1999).

    CAS  PubMed  Google Scholar 

  34. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    CAS  PubMed  Google Scholar 

  35. Parada, L. A., McQueen, P. G. & Misteli, T. Tissue-specific spatial organization of genomes. Genome Biol. 5, R44 (2004).

    PubMed  PubMed Central  Google Scholar 

  36. Agmon, N., Liefshitz, B., Zimmer, C., Fabre, E. & Kupiec, M. Effect of nuclear architecture on the efficiency of double-strand break repair. Nat. Cell Biol. 15, 694–699 (2013).

    CAS  PubMed  Google Scholar 

  37. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein, I. A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rocha, P. P. et al. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol. Cell 47, 873–885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660–664 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    CAS  PubMed  Google Scholar 

  44. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, J. I. & Crabtree, G. R. Cell signaling. Nuclear actin as choreographer of cell morphology and transcription. Science 316, 1710–1711 (2007).

    CAS  PubMed  Google Scholar 

  46. Dion, V. & Gasser, S. M. Chromatin movement in the maintenance of genome stability. Cell 152, 1355–1364 (2013).

    CAS  PubMed  Google Scholar 

  47. Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089 (2002).

    CAS  PubMed  Google Scholar 

  48. Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723–733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Taddei, A., Schober, H. & Gasser, S. M. The budding yeast nucleus. Cold Spring Harb. Perspect. Biol. 2, a000612 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    CAS  PubMed  Google Scholar 

  51. Wiesmeijer, K., Krouwels, I. M., Tanke, H. J. & Dirks, R. W. Chromatin movement visualized with photoactivable GFP-labeled histone H4. Differentiation 76, 83–90 (2008).

    CAS  PubMed  Google Scholar 

  52. Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. & Cremer, T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomson, I., Gilchrist, S., Bickmore, W. A. & Chubb, J. R. The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr. Biol. 14, 166–172 (2004).

    CAS  PubMed  Google Scholar 

  54. Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001).

    CAS  PubMed  Google Scholar 

  55. Pliss, A., Malyavantham, K., Bhattacharya, S., Zeitz, M. & Berezney, R. Chromatin dynamics is correlated with replication timing. Chromosoma 118, 459–470 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423–427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ragunathan, K., Liu, C. & Ha, T. RecA filament sliding on DNA facilitates homology search. eLife 1, e00067 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Renkawitz, J., Lademann, C. A., Kalocsay, M. & Jentsch, S. Monitoring homology search during DNA double-strand break repair in vivo. Mol. Cell 50, 261–272 (2013).

    CAS  PubMed  Google Scholar 

  59. Gandhi, M. et al. Homologous chromosomes make contact at the sites of double-strand breaks in genes in somatic G0/G1-phase human cells. Proc. Natl Acad. Sci. USA 109, 9454–9459 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5, 572–577 (2003).

    CAS  PubMed  Google Scholar 

  61. Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931 (2007).

    CAS  PubMed  Google Scholar 

  62. Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489–6499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, J. A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Osborne, C. S. Molecular pathways: transcription factories and chromosomal translocations. Clin. Cancer Res. 20, 296–300 (2013).

    PubMed  Google Scholar 

  66. Osborne, C. S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5, e192 (2007).

    PubMed  PubMed Central  Google Scholar 

  67. Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mathas, S. et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc. Natl Acad. Sci. USA 106, 5831–5836 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dupre, A. et al. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat. Chem. Biol. 4, 119–125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stracker, T. H. & Petrini, J. H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    CAS  PubMed  Google Scholar 

  73. Williams, R. S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dinkelmann, M. et al. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat. Struct. Mol. Biol. 16, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Helmink, B. A. et al. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J. Exp. Med. 206, 669–679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rass, E. et al. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat. Struct. Mol. Biol. 16, 819–824 (2009).

    CAS  PubMed  Google Scholar 

  77. Xie, A., Kwok, A. & Scully, R. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat. Struct. Mol. Biol. 16, 814–818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Della-Maria, J. et al. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem. 286, 33845–33853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ferguson, D. O. et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl Acad. Sci. USA 97, 6630–6633 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    CAS  PubMed  Google Scholar 

  83. Weinstock, D. M., Brunet, E. & Jasin, M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat. Cell Biol. 9, 978–981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Simsek, D. & Jasin, M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17, 410–416 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma, J. L., Kim, E. M., Haber, J. E. & Lee, S. E. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell Biol. 23, 8820–8828 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Difilippantonio, M. J. et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J. Exp. Med. 196, 469–480 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002).

    CAS  PubMed  Google Scholar 

  90. Boboila, C. et al. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J. Exp. Med. 207, 417–427 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Liang, L. et al. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res. 36, 3297–3310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Simsek, D. et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 7, e1002080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y. & Jasin, M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18, 80–84 (2011).

    CAS  PubMed  Google Scholar 

  94. Dobbs, T. A., Tainer, J. A. & Lees-Miller, S. P. A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair 9, 1307–1314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Neal, J. A. & Meek, K. Choosing the right path: does DNA-PK help make the decision? Mutat. Res. 711, 73–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Uematsu, N. et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J. Cell Biol. 177, 219–229 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    CAS  PubMed  Google Scholar 

  98. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  99. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Payen, C., Koszul, R., Dujon, B. & Fischer, G. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet. 4, e1000175 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. Pâques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    PubMed  PubMed Central  Google Scholar 

  102. Elliott, B., Richardson, C. & Jasin, M. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol. Cell 17, 885–894 (2005).

    CAS  PubMed  Google Scholar 

  103. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    CAS  PubMed  Google Scholar 

  104. Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Weinstock, D. M., Elliott, B. & Jasin, M. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107, 777–780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kloosterman, W. P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012).

    CAS  PubMed  Google Scholar 

  107. Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. A., Carvalho, C. M. & Lupski, J. R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    CAS  PubMed  Google Scholar 

  110. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Weinstock, D. M., Richardson, C. A., Elliott, B. & Jasin, M. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair 5, 1065–1074 (2006).

    CAS  PubMed  Google Scholar 

  113. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902–2906 (2008).

    CAS  PubMed  Google Scholar 

  114. Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    CAS  PubMed  Google Scholar 

  115. Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243–254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Price, B. D. & D'Andrea, A. D. Chromatin remodeling at DNA double-strand breaks. Cell 152, 1344–1354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Soria, G., Polo, S. E. & Almouzni, G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell 46, 722–734 (2012).

    CAS  PubMed  Google Scholar 

  119. Mathas, S. & Misteli, T. The dangers of transcription. Cell 139, 1047–1049 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27, 561–571 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kato, L. et al. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes. Proc. Natl Acad. Sci. USA 109, 2479–2484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Misteli laboratory is supported by the Intramural Research Program of the National Institutes of Health (NIH), NCI, Center for Cancer Research. We dedicate this Review to the memory of Janet Rowley, who boldly founded and thoughtfully guided the field of chromosome translocation biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vassilis Roukos or Tom Misteli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roukos, V., Misteli, T. The biogenesis of chromosome translocations. Nat Cell Biol 16, 293–300 (2014). https://doi.org/10.1038/ncb2941

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing