Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages

Abstract

Notch signalling is implicated in stem and progenitor cell fate control in numerous organs. Using conditional in vivo genetic labelling we traced the fate of cells expressing the Notch2 receptor paralogue and uncovered the existence of two previously unrecognized mammary epithelial cell lineages that we term S (Small) and L (Large). S cells appear in a bead-on-a-string formation and are embedded between the luminal and basal/myoepithelial layers in a unique reiterative pattern, whereas single or paired L cells appear among ductal and alveolar cells. Long-term lineage tracing and functional studies indicate that S and L cells regulate ipsi- and contralateral spatial placement of tertiary branches and formation of alveolar clusters. Our findings revise present models of mammary epithelial cell hierarchy, reveal a hitherto undescribed mechanism regulating branching morphogenesis and may have important implications for identification of the cell-of-origin of distinct breast cancer subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch2+ lineages define distinct subsets of MECs.
Figure 2: Expression of lineage-specific markers in L and S cells.
Figure 3: The fate of pubertal Notch2+ lineages in pregnancy.
Figure 4: The fate of pubertal Notch2+ lineages during lactation and involution.
Figure 5: Ablation of pubertal Notch2+ lineages impairs formation of tertiary branches and alveolar clusters.
Figure 6: Proposed revised model of the MEC lineages and differentiation hierarchy.

Similar content being viewed by others

References

  1. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  Google Scholar 

  2. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201–209 (2007).

    Article  CAS  Google Scholar 

  3. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  Google Scholar 

  4. Stingl, J., Raouf, A., Eirew, P. & Eaves, C. J. Deciphering the mammary epithelial cell hierarchy. Cell Cycle 5, 1519–1522 (2006).

    Article  CAS  Google Scholar 

  5. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8, R7 (2006).

    Article  Google Scholar 

  6. Villadsen, R. et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol. 177, 87–101 (2007).

    Article  CAS  Google Scholar 

  7. Visvader, J. E. & Lindeman, G. J. The unmasking of novel unipotent stem cells in the mammary gland. EMBO J. 30, 4858–4859 (2011).

    Article  CAS  Google Scholar 

  8. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  Google Scholar 

  9. Artavanis-Tsakonas, S. & Muskavitch, M. A. Notch: the past, the present, and the future. Curr. Top. Dev. Biol. 92, 1–29 (2010).

    Article  CAS  Google Scholar 

  10. Politi, K. et al. Notch in mammary gland development and breast cancer. Semin. Cancer Biol. 5, 341–7 (2004).

    Article  Google Scholar 

  11. Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).

    Article  CAS  Google Scholar 

  12. Bouras, T. et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3, 429–441 (2008).

    Article  CAS  Google Scholar 

  13. Buono, K. D. et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev. Biol. 293, 565–580 (2006).

    Article  CAS  Google Scholar 

  14. Raouf, A. et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3, 109–118 (2008).

    Article  CAS  Google Scholar 

  15. Yalcin-Ozuysal, O. et al. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 17, 1600–1612 (2010).

    Article  CAS  Google Scholar 

  16. Raafat, A. et al. Expression of Notch receptors, ligands, and target genes during development of the mouse mammary gland. J. Cell. Physiol. 226, 1940–1952 (2011).

    Article  CAS  Google Scholar 

  17. O’Neill, C. F. et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am. J. Pathol. 171, 1023–1036 (2007).

    Article  Google Scholar 

  18. Parr, C., Watkins, G. & Jiang, W. G. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int. J. Mole. Med. 14, 779–786 (2004).

    CAS  Google Scholar 

  19. Florena, A. M. et al. Associations between Notch-2, Akt-1 and HER2/neuexpression in invasive human breast cancer: a tissue microarray immunophenotypic analysis on 98 patients. Pathobiol.: J. Immunopathol. Mol. Cell. Biol. 74, 317–322 (2007).

    Article  CAS  Google Scholar 

  20. Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Gene. 41, 579–584 (2009).

    Article  CAS  Google Scholar 

  21. Fu, Y. P. et al. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations. Mol. Cancer 9, 113 (2010).

    Article  Google Scholar 

  22. Robinson, D. R. et al. Functionally recurrent rearrangements of theMAST kinase and Notch gene families in breast cancer. Nat. Med. 17, 1646–1651 (2011).

    Article  CAS  Google Scholar 

  23. Fre, S. et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PloS One 6, e25785 (2011).

    Article  CAS  Google Scholar 

  24. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Gene. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  25. Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    Article  CAS  Google Scholar 

  26. Chen, L. H. & Bissell, M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1, 45–54 (1989).

    Article  CAS  Google Scholar 

  27. Keller, P. J., Arendt, L. M. & Kuperwasser, C. Stem cell maintenance of the mammary gland: it takes two. Cell Stem Cell 9, 496–497 (2011).

    Article  CAS  Google Scholar 

  28. Visvader, J. E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Gene. Dev. 23, 2563–2577 (2009).

    Article  CAS  Google Scholar 

  29. Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128, 3117–3131 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 162, 1123–1133 (2003).

    Article  CAS  Google Scholar 

  31. Sakai, T., Larsen, M. & Yamada, K. M. Fibronectin requirement in branching morphogenesis. Nature 423, 876–881 (2003).

    Article  CAS  Google Scholar 

  32. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    Article  CAS  Google Scholar 

  33. Sternlicht, M. D., Kouros-Mehr, H., Lu, P. & Werb, Z. Hormonal and local control of mammary branching morphogenesis. Diff.; Res. Biol. Diversity 74, 365–381 (2006).

    Article  CAS  Google Scholar 

  34. Wagner, K. U. et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129, 1377–1386 (2002).

    CAS  PubMed  Google Scholar 

  35. Oakes, S. R. et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Gene. Dev. 22, 581–586 (2008).

    Article  CAS  Google Scholar 

  36. Oliver, C. H., Khaled, W. T., Frend, H., Nichols, J. & Watson, C. J. The Stat6-regulated KRAB domain zinc finger protein Zfp157 regulates the balance of lineages in mammary glands and compensates for loss of Gata-3. Gene. Dev. 26, 1086–1097 (2012).

    Article  CAS  Google Scholar 

  37. Smith, G. H. & Chepko, G. Mammary epithelial stem cells. Microsc. Res. Techn. 52, 190–203 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. S. Brugge for her long-standing and very generous technical and theoretical advice throughout this project as well as for critical reading of the manuscript. We thank A. Shiang-Ru Kaanta for technical advice and critical reading of the manuscript and also A. Louvi for critical reading of the manuscript. In addition, we would also like to thank the Nikon Imaging Center at Harvard Medical School for help with light microscopy and the Animal Facility at Harvard Center for Comparative Medicine for helping in the maintenance and care of the transgenic animals. This work was supported by grants from the NIH to S.A-T.

Author information

Authors and Affiliations

Authors

Contributions

S.S. conceptualized, designed and performed all experiments and data analysis; D.L. contributed to transplantation experiments; S.A-T. conceived the study. S.S. and S.A-T. wrote the paper.

Corresponding author

Correspondence to Spyros Artavanis-Tsakonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 957 kb)

Supplementary Information

Supplementary Table 1 (XLS 13 kb)

S Cell String.

This video is related to Supplementary Fig. S3b. (AVI 3954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šale, S., Lafkas, D. & Artavanis-Tsakonas, S. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 15, 451–460 (2013). https://doi.org/10.1038/ncb2725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing