Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wnt7a–Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle

Abstract

Wnt7a signals through its receptor Fzd7 to activate the planar-cell-polarity pathway and drive the symmetric expansion of satellite stem cells resulting in enhanced repair of skeletal muscle. In differentiated myofibres, we observed that Wnt7a binding to Fzd7 directly activates the Akt/mTOR growth pathway, thereby inducing myofibre hypertrophy. Notably, the Fzd7 receptor complex was associated with Gαs and PI(3)K and these components were required for Wnt7a to activate the Akt/mTOR growth pathway in myotubes. Wnt7a–Fzd7 activation of this pathway was completely independent of IGF-receptor activation. Together, these experiments demonstrate that Wnt7a–Fzd7 activates distinct pathways at different developmental stages during myogenic lineage progression, and identify a non-canonical anabolic signalling pathway for Wnt7a and its receptor Fzd7 in skeletal muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt7a induces hypertrophy in differentiated myotubes and myofibres.
Figure 2: Wnt7a induces muscle hypertrophy through its receptor Fzd7.
Figure 3: Wnt7a activates the Akt/mTOR pathway in differentiated myotubes and myofibres.
Figure 4: Wnt7a induces hypertrophy independent of IGFR activity.
Figure 5: The Fzd7 receptor complex contains PI(3)K and the G protein Gαs.

Similar content being viewed by others

References

  1. Gordon, M. D. & Nusse, R. Wnt signalling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    Article  CAS  Google Scholar 

  2. Wodarz, A. & Nusse, R. Mechanisms of Wnt signalling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    Article  CAS  Google Scholar 

  3. Montcouquiol, M. & Kelley, M. W. Planar and vertical signals control cellular differentiation and patterning in the mammalian cochlea. J. Neurosci. 23, 9469–9478 (2003).

    Article  CAS  Google Scholar 

  4. Le Grand, F., Jones, A. E., Seale, V., Scime, A. & Rudnicki, M. A. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4, 535–547 (2009).

    Article  CAS  Google Scholar 

  5. Tajbakhsh, S. et al. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125, 4155–4162 (1998).

    CAS  PubMed  Google Scholar 

  6. Chen, A. E., Ginty, D. D. & Fan, C. M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    Article  CAS  Google Scholar 

  7. Borello, U. et al. The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133, 3723–3732 (2006).

    Article  CAS  Google Scholar 

  8. Anakwe, K. et al. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 130, 3503–3514 (2003).

    Article  CAS  Google Scholar 

  9. Rochat, A. et al. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol. Biol. cell 15, 4544–4555 (2004).

    Article  CAS  Google Scholar 

  10. van der Velden, J. L. et al. Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am. J. Physiol. 290, C453–C462 (2006).

    Article  CAS  Google Scholar 

  11. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J. & Rando, T. A. A temporal switch from notch to Wnt signalling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2, 50–59 (2008).

    Article  CAS  Google Scholar 

  12. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  Google Scholar 

  13. Glass, D. J. Skeletal muscle hypertrophy and atrophy signalling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984 (2005).

    Article  CAS  Google Scholar 

  14. Crescenzi, M., Crouch, D. H. & Tato, F. Transformation by myc prevents fusion but not biochemical differentiation of C2C12 myoblasts: mechanisms of phenotypic correction in mixed culture with normal cells. J. Cell Biol. 125, 1137–1145 (1994).

    Article  CAS  Google Scholar 

  15. Collins, A. R., Squires, S. & Johnson, R. T. Inhibitors of repair DNA synthesis. Nucleic Acids Res. 10, 1203–1213 (1982).

    Article  CAS  Google Scholar 

  16. Tanaka, S., Akiyoshi, T., Mori, M., Wands, J. R. & Sugimachi, K. A novel frizzled gene identified in human esophageal carcinoma mediates APC/β-catenin signals. Proc. Natl Acad. Sci. USA 95, 10164–10169 (1998).

    Article  CAS  Google Scholar 

  17. Kengaku, M. et al. Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 280, 1274–1277 (1998).

    Article  CAS  Google Scholar 

  18. Harwood, A.J. Regulation of GSK-3: a cellular multiprocessor. Cell 105, 821–824 (2001).

    Article  CAS  Google Scholar 

  19. Parrizas, M., Gazit, A., Levitzki, A., Wertheimer, E. & LeRoith, D. Specific inhibition of insulin-like growth factor-1 and insulin receptor tyrosine kinase activity and biological function by tyrphostins. Endocrinology 138, 1427–1433 (1997).

    Article  CAS  Google Scholar 

  20. Kandarian, S. C. & Jackman, R. W. Intracellular signalling during skeletal muscle atrophy. Muscle Nerve 33, 155–165 (2006).

    Article  CAS  Google Scholar 

  21. Miyazaki, M. & Esser, K. A. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J. Appl. Physiol. 106, 1367–1373 (2009).

    Article  CAS  Google Scholar 

  22. Pietrangelo, T. et al. Characterization of specific GTP binding sites in C2C12 mouse skeletal muscle cells. J. Muscle Res. Cell Motil. 23, 107–118 (2002).

    Article  CAS  Google Scholar 

  23. Freissmuth, M. et al. Suramin analogues as subtype-selective G protein inhibitors. Mol. Pharmacol. 49, 602–611 (1996).

    CAS  PubMed  Google Scholar 

  24. Schulte, G. & Bryja, V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 518–525 (2007).

    Article  CAS  Google Scholar 

  25. Foord, S. M. et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 (2005).

    Article  CAS  Google Scholar 

  26. Timmers, S., Schrauwen, P. & de Vogel, J. Muscular diacylglycerol metabolism and insulin resistance. Physiol. Behav. 94, 242–251 (2008).

    Article  CAS  Google Scholar 

  27. Frost, R. A. & Lang, C. H. Protein kinase B/Akt: a nexus of growth factor and cytokine signalling in determining muscle mass. J. Appl. Physiol. 103, 378–387 (2007).

    Article  CAS  Google Scholar 

  28. Tisdale, M. J. Cancer cachexia. Curr. Opin. Gastroenterol. 26, 146–151 (2010).

    Article  Google Scholar 

  29. Sakuma, K. & Yamaguchi, A. Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr. Aging Sci. 3, 90–101 (2010).

    Article  CAS  Google Scholar 

  30. Costelli, P. et al. IGF-1 is downregulated in experimental cancer cachexia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R674–R683 (2006).

    Article  CAS  Google Scholar 

  31. Botfield, C., Ross, R. J. & Hinds, C. J. The role of IGFs in catabolism. Baillieres Clin. Endocrinol. Metab. 11, 679–697 (1997).

    Article  CAS  Google Scholar 

  32. Lang, C. H., Hong-Brown, L. & Frost, R. A. Cytokine inhibition of JAK-STAT signalling: a new mechanism of growth hormone resistance. Pediatr. Nephrol. 20, 306–312 (2005).

    Article  Google Scholar 

  33. Grounds, M. D., Radley, H. G., Gebski, B. L., Bogoyevitch, M. A. & Shavlakadze, T. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin. Exp. Pharmacol. Physiol. 35, 846–851 (2008).

    Article  CAS  Google Scholar 

  34. Del Aguila, L. F. et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E206–E212 (2000).

    Article  CAS  Google Scholar 

  35. de Alvaro, C., Teruel, T., Hernandez, R. & Lorenzo, M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J. Biol. Chem. 279, 17070–17078 (2004).

    Article  CAS  Google Scholar 

  36. Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E. & Rudnicki, M. A. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10, 1173–1183 (1996).

    Article  CAS  Google Scholar 

  37. von Maltzahn, J., Euwens, C., Willecke, K. & Sohl, G. The novel mouse connexin39 gene is expressed in developing striated muscle fibers. J. Cell Sci. 117, 5381–5392 (2004).

    Article  CAS  Google Scholar 

  38. Parker, M. H., Perry, R. L., Fauteux, M. C., Berkes, C. A. & Rudnicki, M. A. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol. Cell. Biol. 26, 5771–5783 (2006).

    Article  CAS  Google Scholar 

  39. Gillespie, M. A. et al. p38-{γ}-dependent gene silencing restricts entry into the myogenic differentiation program. J. Cell Biol. 187, 991–1005 (2009).

    Article  CAS  Google Scholar 

  40. McKinnell, I. W. et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat. Cell Biol. 10, 77–84 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Price and V. Soleimani for critical reading of the manuscript. M.A.R. holds the Canada Research Chair in Molecular Genetics and is an International Research Scholar of the Howard Hughes Medical Institute. C.F.B. is supported by the Swiss National Science Foundation. This work was financially supported by grants from the Muscular Dystrophy Association, Canadian Institutes of Health Research, National Institutes of Health, Howard Hughes Medical Institute and the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Contributions

J.v.M. and M.A.R. planned the experimental design, analysed data and wrote the paper. J.v.M. and C.F.B. conducted the experiments.

Corresponding author

Correspondence to Michael A. Rudnicki.

Ethics declarations

Competing interests

M.A.R. is a founding scientist and consultant with Fate Therapeutics.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1334 kb)

Supplementary Table 1

Supplementary Information (XLS 22 kb)

Supplementary Table 2

Supplementary Information (XLS 21 kb)

Supplementary Table 3

Supplementary Information (XLS 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Maltzahn, J., Bentzinger, C. & Rudnicki, M. Wnt7a–Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol 14, 186–191 (2012). https://doi.org/10.1038/ncb2404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing