Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors

Abstract

Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell’s ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor’s carboxy-terminal PDZ ligand and Rab4 (refs 1, 2). This active sorting process is required for functional resensitization of β2AR-mediated signalling3,4. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid recycling β2ARs selectively enter retromer-associated endosomal tubules.
Figure 2: Knockdown of retromer by RNAi inhibits β2AR recycling and misroutes internalized β2ARs to lysosomes.
Figure 3: Retromer depletion preferentially affects β2ARs over TFRs traversing the same endosomes.
Figure 4: β2AR and CIMPR follow divergent trafficking paths on exiting from the same retromer-associated tubule.
Figure 5: SNX27 serves as an adaptor for β2AR, sorting it into the retromer tubule.

Similar content being viewed by others

References

  1. Seachrist, J. L., Anborgh, P. H. & Ferguson, S. S. β2-adrenergic receptor internalization, endosomal sorting, and plasma membrane recycling are regulated by rab GTPases. J. Biol. Chem. 275, 27221–27228 (2000).

    CAS  PubMed  Google Scholar 

  2. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  CAS  Google Scholar 

  3. Wang, Y., Lauffer, B., Von Zastrow, M., Kobilka, B. K. & Xiang, Y. N-ethylmaleimide-sensitive factor regulates β2 adrenoceptor trafficking and signaling in cardiomyocytes. Mol. Pharmacol. 72, 429–439 (2007).

    Article  CAS  Google Scholar 

  4. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  Google Scholar 

  5. Pippig, S., Andexinger, S. & Lohse, M. J. Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666–676 (1995).

    CAS  PubMed  Google Scholar 

  6. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  7. Puthenveedu, M. A. et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143, 761–773 (2010).

    Article  CAS  Google Scholar 

  8. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).

    Article  CAS  Google Scholar 

  9. Carlton, J. G. & Cullen, P. J. Sorting nexins. Curr. Biol. 15, R819–R820 (2005).

    Article  CAS  Google Scholar 

  10. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  Google Scholar 

  11. Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008).

    Article  CAS  Google Scholar 

  12. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    Article  CAS  Google Scholar 

  13. Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).

    Article  CAS  Google Scholar 

  14. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell Biol. 7, 568–579 (2006).

    Article  CAS  Google Scholar 

  15. Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993).

    Article  CAS  Google Scholar 

  16. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  Google Scholar 

  17. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  Google Scholar 

  18. Moore, R. H., Millman, E. E., Alpizar-Foster, E., Dai, W. & Knoll, B. J. Rab11 regulates the recycling and lysosome targeting of β2-adrenergic receptors. J. Cell Sci. 117, 3107–3117 (2004).

    Article  CAS  Google Scholar 

  19. von Zastrow, M. & Kobilka, B. K. Ligand-regulated internalization and recycling of human β2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267, 3530–3538 (1992).

    CAS  PubMed  Google Scholar 

  20. Lin, S. X., Mallet, W. G., Huang, A. Y. & Maxfield, F. R. Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol. Biol. Cell 15, 721–733 (2004).

    Article  CAS  Google Scholar 

  21. Roth, J. & Berger, E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 93, 223–229 (1982).

    Article  CAS  Google Scholar 

  22. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  Google Scholar 

  23. Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10, 170–177 (2008).

    Article  CAS  Google Scholar 

  24. Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 (2002).

    Article  CAS  Google Scholar 

  25. Ganley, I. G., Espinosa, E. & Pfeffer, S. R. A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J. Cell Biol. 180, 159–172 (2008).

    Article  CAS  Google Scholar 

  26. Progida, C. et al. Rab7b controls trafficking from endosomes to the TGN. J. Cell Sci. 123, 1480–1491 (2010).

    Article  CAS  Google Scholar 

  27. Derby, M. C. et al. The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8, 758–773 (2007).

    Article  CAS  Google Scholar 

  28. Utskarpen, A., Slagsvold, H. H., Iversen, T. G., Walchli, S. & Sandvig, K. Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A′. Traffic 7, 663–672 (2006).

    Article  CAS  Google Scholar 

  29. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  Google Scholar 

  30. Lauffer, B. E. et al. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol. 190, 565–574 (2010).

    Article  CAS  Google Scholar 

  31. Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).

    Article  CAS  Google Scholar 

  32. He, J. et al. Proteomic analysis of β1-adrenergic receptor interactions with PDZ scaffold proteins. J. Biol. Chem. 281, 2820–2827 (2006).

    Article  CAS  Google Scholar 

  33. Gage, R. M., Matveeva, E. A., Whiteheart, S. W. & von Zastrow, M. Type I PDZ ligands are sufficient to promote rapid recycling of G Protein-coupled receptors independent of binding to N-ethylmaleimide-sensitive factor. J. Biol. Chem. 280, 3305–3313 (2005).

    Article  CAS  Google Scholar 

  34. Vargas, G. A. & Von Zastrow, M. Identification of a novel endocytic recycling signal in the D1 dopamine receptor. J. Biol. Chem. 279, 37461–37469 (2004).

    Article  CAS  Google Scholar 

  35. Heydorn, A. et al. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J. Biol. Chem. 279, 54291–54303 (2004).

    Article  CAS  Google Scholar 

  36. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).

    Article  CAS  Google Scholar 

  37. Tabuchi, M., Yanatori, I., Kawai, Y. & Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci. 123, 756–766 (2010).

    Article  CAS  Google Scholar 

  38. Kleine-Vehn, J. et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl Acad. Sci. USA 105, 17812–17817 (2008).

    Article  CAS  Google Scholar 

  39. Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007).

    Article  CAS  Google Scholar 

  40. Marchese, A., Paing, M. M., Temple, B. R. & Trejo, J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol. 48, 601–629 (2008).

    Article  CAS  Google Scholar 

  41. Holmes, K. D., Babwah, A. V., Dale, L. B., Poulter, M. O. & Ferguson, S. S. Differential regulation of corticotropin releasing factor 1α receptor endocytosis and trafficking by β-arrestins and Rab GTPases. J. Neurochem. 96, 934–949 (2006).

    Article  CAS  Google Scholar 

  42. Tang, Y. et al. Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor. Proc. Natl Acad. Sci. USA 96, 12559–12564 (1999).

    Article  CAS  Google Scholar 

  43. Jager, S. et al. Purification and characterization of HIV-human protein complexes. Methods 53, 13–19 (2011).

    Article  CAS  Google Scholar 

  44. Cottrell, G. S. et al. Endosomal endothelin-converting enzyme-1: a regulator of β-arrestin-dependent ERK signaling. J. Biol. Chem. 284, 22411–22425 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Padilla, J. Bonifacino, Y. Prabhu, N. Gulbahce, S. Duleh, M. Welch, R. Rojas, J. Hislop, M. Puthenveedu, K. Mostov, J. Weissman, K. Thorn, the Nikon Imaging Center, A. Burlingame and the UCSF Mass Spectrometry facility (supported by P41RR001614) for reagents, advice, technical training and support. Last, we thank H. Bourne and M. Ray for critical readings of the manuscript. This work was supported by research grants from the National Institutes of Health. P.T. was supported by the National Science Foundation. N.J.K. is a Searle and Keck Young Investigator Fellow.

Author information

Authors and Affiliations

Authors

Contributions

P.T. and M.v.Z. conceived the project and wrote the manuscript. P.T. carried out most of the experiments with contributions from B.L. Mass spectrometry was carried out by S.J., analysed by P.C., in the laboratory of N.J.K.

Corresponding author

Correspondence to Mark von Zastrow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 379 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1674 kb)

Supplementary Information

Supplementary Table 1 (XLS 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temkin, P., Lauffer, B., Jäger, S. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13, 715–721 (2011). https://doi.org/10.1038/ncb2252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing