Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration

Abstract

Cell migration is a dynamic process that requires temporal and spatial regulation of integrin activation and focal adhesion assembly/disassembly1. Talin, an actin and β-integrin tail-binding protein, is essential for integrin activation and focal adhesion formation2,3. Calpain-mediated cleavage of talin has a key role in focal adhesion turnover3; however, the talin head domain, one of the two cleavage products, stimulates integrin activation, localizes to focal adhesions and maintains cell edge protrusions2,4,5, suggesting that other steps, downstream of talin proteolysis, are required for focal adhesion disassembly. Here we show that talin head binds Smurf1, an E3 ubiquitin ligase involved in cell polarity and migration6,7, more tightly than full-length talin does and that this interaction leads to talin head ubiquitylation and degradation. We found that talin head is a substrate for Cdk5, a cyclin-dependent protein kinase that is essential for cell migration, synaptic transmission and cancer metastasis8,9,10,11. Cdk5 phosphorylated talin head at Ser 425, inhibiting its binding to Smurf1, thus preventing talin head ubiquitylation and degradation. Expression of the mutant talS425A, which resists Cdk5 phosphorylation thereby increasing its susceptibility to Smurf1-mediated ubiqitylation, resulted in extensive focal adhesion turnover and inhibited cell migration. Thus, talin head produced by calpain-induced cleavage of talin is degraded through Smurf1-mediated ubiquitylation; moreover, phosphorylation by Cdk5 regulates the binding of Smurf1 to talin head, controlling talin head turnover, adhesion stability and ultimately, cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk5 phosphorylates talin at Ser 425.
Figure 2: Expression of phosphorylation-deficient talin mutants inhibits cell migration.
Figure 3: Talin phosphorylation by Cdk5 is important for the disassembly of focal adhesions.
Figure 4: Talin phosphorylation by Cdk5 stabilizes lamellipodia.
Figure 5: Phosphorylation by Cdk5 inhibits Smurf1-mediated talin head ubiquitylation.

Similar content being viewed by others

References

  1. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).

    Article  CAS  Google Scholar 

  2. Goksoy, E. et al. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31, 124–133 (2008).

    Article  CAS  Google Scholar 

  3. Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).

    Article  CAS  Google Scholar 

  4. Nuckolls, G. H., Romer, L. H. & Burridge, K. Microinjection of antibodies against talin inhibits the spreading and migration of fibroblasts. J. Cell Sci. 102, 753–762 (1992).

    CAS  PubMed  Google Scholar 

  5. Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nature Cell Biol. 10, 1062–1068 (2008).

    Article  CAS  Google Scholar 

  6. Wang, H.-R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  Google Scholar 

  7. Sahai, E., Garcia-Medina, R., Pouyssegur, J. & Vial, E. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 176, 35–42 (2007).

    Article  CAS  Google Scholar 

  8. Cruz, J. C. & Tsai, L. H. A Jekyll and Hyde disease: roles for Cdk5 in brain development and disease. Curr. Opin. Neurobiol. 14, 390–394 (2004).

    Article  CAS  Google Scholar 

  9. Xie, Z. G., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  Google Scholar 

  10. Tsai, L. H. Regulation of neuronal migration by cdk5. FASEB J. 15, A2–A2 (2001).

    Article  Google Scholar 

  11. Strock, C. J. et al. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res. 66, 7509–7515 (2006).

    Article  CAS  Google Scholar 

  12. Nuckolls, G. H., Turner, C. E. & Burridge, K. Functional-studies of the domains of talin. J. Cell Biol. 110, 1635–1644 (1990).

    Article  CAS  Google Scholar 

  13. Calderwood, D. A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  Google Scholar 

  14. Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. Nature 420, 85–89 (2002).

    Article  CAS  Google Scholar 

  15. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  Google Scholar 

  16. Chen, H. C. et al. Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem. 270, 16995–16999 (1995).

    Article  CAS  Google Scholar 

  17. Borowsky, M. L. & Hynes, R. O. Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J. Cell Biol. 143, 429–442 (1998).

    Article  CAS  Google Scholar 

  18. Wegener, K. L. et al. Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. J. Mol. Biol. 382, 112–126 (2008).

    Article  CAS  Google Scholar 

  19. Critchley, D. R. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem. Soc. Trans. 32, 831–836 (2004).

    Article  CAS  Google Scholar 

  20. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  21. Petrich, B. G. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J. Exp. Med. 204, 3103–3111 (2007).

    Article  CAS  Google Scholar 

  22. Han, J. W. et al. Reconstructing and deconstructing agonist-induced activation of integrin α IIb β 3. Curr. Biol. 16, 1796–1806 (2006).

    Article  CAS  Google Scholar 

  23. Priddle, H. et al. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 142, 1121–1133 (1998).

    Article  CAS  Google Scholar 

  24. Cram, E. J., Clark, S. G. & Schwarzbauer, J. E. Talin loss-of-function uncovers roles in cell contractility and migration in C-elegans. J. Cell Sci. 116, 3871–3878 (2003).

    Article  CAS  Google Scholar 

  25. Ratnikov, B. et al. Talin phosphorylation sites mapped by mass spectrometry. J. Cell Sci. 118, 4921–4923 (2005).

    Article  CAS  Google Scholar 

  26. Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol. 3, 453–459 (2001).

    Article  CAS  Google Scholar 

  27. Chen, F. & Studzinski, G. P. Expression of the neuronal cyclin-dependent kinase 5 activator p35Nck5a in human monocytic cells is associated with differentiation. Blood 97, 3763–3767 (2001).

    Article  CAS  Google Scholar 

  28. Lazaro, J. et al. Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cell Sci. 110, 1251–1260 (1997).

    CAS  PubMed  Google Scholar 

  29. Negash, S., Wang, H.-S., Gao, C., Ledee, D. & Zelenka, P. Cdk5 regulates cell-matrix and cell-cell adhesion in lens epithelial cells. J. Cell Sci. 115, 2109–2117 (2002).

    CAS  PubMed  Google Scholar 

  30. Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    Article  CAS  Google Scholar 

  31. Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  32. Ingham, R. J., Gish, G. & Pawson, T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23, 1972–1984 (2004).

    Article  CAS  Google Scholar 

  33. Huang, C., Rajfur, Z., Borchers, C., Schaller, M. D. & Jacobson, K. JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219–223 (2003).

    Article  CAS  Google Scholar 

  34. Webb, D. J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    Article  CAS  Google Scholar 

  35. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Burridge for critical reading of this manuscript, M. Schaller for critical reading of this manuscript and supporting of phosphorylation assays, A. Huttenlocher for the pEGFP–talin plasmid, L.-H. Tsai for the Cdk5 and p35 plasmids, D. Cyr for the HA-ubiquitin plasmid, E1 and Ubc5α, and M. Kerber for assistance with TIRF imaging. Supported by National Institutes of Health grants to M.H.G., a Cell Migration Consortium grant (NIH GM64346) to M.H.G. and K.J. and a Ruth L. Kirschstein National Research Service Award (1F32 HL08321) to C.H.

Author information

Authors and Affiliations

Authors

Contributions

C.H. carried out most of the experiments; Z.R. asissted with TIRF imaging, N.Y. purified talin and fragments and Z.C. made Smurf1 mutants and analysed binding to talin; M.H.G., K.J. and C.H. guided the research and wrote the paper.

Corresponding authors

Correspondence to Ken Jacobson or Mark H. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Rajfur, Z., Yousefi, N. et al. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol 11, 624–630 (2009). https://doi.org/10.1038/ncb1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing