Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p53 mRNA controls p53 activity by managing Mdm2 functions

Abstract

The E3 ubiquitin ligase Mdm2 is a focal regulator of p53 tumour suppressor activity. It binds p53, promoting its polyubiquitination and degradation, and also controls p53 synthesis. However, it is not known how this dual function of Mdm2 on p53 synthesis and degradation is achieved. Here we show that the p53 mRNA region encoding the Mdm2-binding site interacts directly with the RING domain of Mdm2. This impairs the E3 ligase activity of Mdm2 and promotes p53 mRNA translation. We also show that introduction of cancer-derived single silent point-mutations in the p53 mRNA weakens its binding to Mdm2 and results in reduced p53 activity. These data are consistent with a mechanism by which changes in silent nucleotides can affect the function of the encoded protein, and indicate that Mdm2-mediated control of p53 synthesis and degradation has evolved in the p53 mRNA sequence and its encoded amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mdm2-dependent control of p53 mRNA translation is mediated by the p53 mRNA sequence (MBD-ES) that encodes the Mdm2-binding domain (MBD).
Figure 2: Mdm2 interacts directly and specifically with the MBD-ES of p53 mRNA to induce p53 translation.
Figure 3: p53 mRNA controls Mdm2 E3 ubiquitin ligase activity.
Figure 4: The Mdm2–p53 mRNA interaction controls p53 activity.

Similar content being viewed by others

References

  1. Zhu, J., Zhou, W., Jiang, J. & Chen, X. Identification of a novel p53functional domain that is necessary for mediating apoptosis. J. Biol. Chem. 273, 13030–13036 (1998).

    Article  CAS  Google Scholar 

  2. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  Google Scholar 

  3. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  4. Yin, Y., Stephen, C. W., Luciani, M. G. & Fahraeus, R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nature Cell Biol. 4, 462–467 (2002).

    Article  CAS  Google Scholar 

  5. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  Google Scholar 

  6. Candeias, M. M. et al. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25, 6936–6947 (2006).

    Article  CAS  Google Scholar 

  7. Ray, P. S., Grover, R. & Das, S. Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep. 7, 404–410 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  9. Oscier, D. G. et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 100, 1177–1184 (2002).

    CAS  PubMed  Google Scholar 

  10. Perry, M. E. Mdm2 in the response to radiation. Mol. Cancer Res. 2, 9–19 (2004).

    CAS  PubMed  Google Scholar 

  11. Cheng, T. H. & Cohen, S. N. Human MDM2 isoforms translated differentially on constitutive versus p53-regulated transcripts have distinct functions in the p53/MDM2 and TSG101/MDM2 feedback control loops. Mol. Cell Biol. 27, 111–119 (2007).

    Article  CAS  Google Scholar 

  12. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414–7420 (1994).

    Article  CAS  Google Scholar 

  13. Elenbaas, B., Dobbelstein, M., Roth, J., Shenk, T. & Levine, A. J. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2, 439–451 (1996).

    Article  CAS  Google Scholar 

  14. Rackham, O. & Brown, C. M. Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23, 3346–3355 (2004).

    Article  CAS  Google Scholar 

  15. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  16. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

  17. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  18. Juven, T., Barak, Y., Zauberman, A., George, D. L. & Oren, M. Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8, 3411–3416 (1993).

    CAS  PubMed  Google Scholar 

  19. Unger, T. et al. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18, 3205–3212 (1999).

    Article  CAS  Google Scholar 

  20. Dumaz, N. & Meek, D. W. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18, 7002–7010 (1999).

    Article  CAS  Google Scholar 

  21. Thompson, T. et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol. Chem. 279, 53015–53022 (2004).

    Article  CAS  Google Scholar 

  22. Hayes, V. M. et al. Comprehensive TP53-denaturing gradient gel electrophoresis mutation detection assay also applicable to archival paraffin-embedded tissue. Diagn. Mol. Pathol. 8, 2–10 (1999).

    Article  CAS  Google Scholar 

  23. Kanjilal, S. et al. p53 mutations in nonmelanoma skin cancer of the head and neck: molecular evidence for field cancerization. Cancer Res. 55, 3604–3609 (1995).

    CAS  PubMed  Google Scholar 

  24. Fahraeus, R. Do peptides control their own birth and death? Nature Rev. Mol. Cell Biol. 6, 263–267 (2005).

    Article  CAS  Google Scholar 

  25. Jin, S. & Levine, A. J. The p53 functional circuit. J. Cell Sci. 114, 4139–4140 (2001).

    CAS  PubMed  Google Scholar 

  26. Tenenbaum, S. A., Lager, P. J., Carson, C. C. & Keene, J. D. Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26, 191–198 (2002).

    Article  CAS  Google Scholar 

  27. Lima, S. M., Peabody, D. S., Silva, J. L. & de Oliveira, A. C. Mutations in the hydrophobic core and in the protein-RNA interface affect the packing and stability of icosahedral viruses. Eur. J. Biochem. 271, 135–145 (2004).

    Article  CAS  Google Scholar 

  28. Li, Y., Jiang, Z., Chen, H. & Ma, W. J. A modified quantitative EMSA and its application in the study of RNA--protein interactions. J. Biochem. Biophys. Methods 60, 85–96 (2004).

    Article  CAS  Google Scholar 

  29. Jaffray, E. G. & Hay, R. T. Detection of modification by ubiquitin-like proteins. Methods 38, 35–38 (2006).

    Article  CAS  Google Scholar 

  30. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  31. Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods 184, 39–51 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by AICR, AVENIR/INSERM and La Ligue Contre le Cancer. M.M.C. was supported by grant SFRH/BD/16697/2004 from the Fundação para a Ciência e a Tecnologia of Portugal. Bacterial purified hMdm2 was a gift from D. Xirodimas and we are thankful to Chris M. Brown and Nattanan Panjaworayan, Dunedin, New Zealand for providing the TriFC constructs. Anti-p53 and anti-Mdm2 antibodies were a gift from B. Vojtesek. Flow cytometry and immunofluorescence microscopy experiments were performed at the Imagery Department of the Institut Universitaire d'Hematologie-IFR105.

Author information

Authors and Affiliations

Authors

Contributions

R.F. and M.M.C. designed the project; M.M.C., L.M.-C. and M.M.M. performed the experiments; all authors contributed to data analysis; R.F., M.M.C. and C.D. wrote the manuscript.

Corresponding author

Correspondence to Robin Fåhraeus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candeias, M., Malbert-Colas, L., Powell, D. et al. p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10, 1098–1105 (2008). https://doi.org/10.1038/ncb1770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing