Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of protein tyrosine phosphatase 1B by sumoylation

Abstract

Protein-tyrosine phosphatase 1B (PTP1B) is an ubiquitously expressed enzyme that negatively regulates growth-factor signalling and cell proliferation by binding to and dephosphorylating key receptor tyrosine kinases, such as the insulin receptor1. It is unclear how the activity of PTP1B is regulated. Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1 (PIAS1)2 was isolated as a PTP1B-interacting protein. Here, we show that PIAS1, which functions as a small ubiquitin-like modifier (SUMO) E3 ligase, associates with PTP1B in mammalian fibroblasts and catalyses sumoylation of PTP1B. Sumoylation of PTP1B reduces its catalytic activity and inhibits the negative effect of PTP1B on insulin receptor signalling and on transformation by the oncogene v-crk. Insulin-stimulated sumoylation of endogenous PTP1B results in a transient downregulation of the enzyme; this event does not occur when the endogenous enzyme is replaced with a sumoylation-resistant mutant of PTP1B. These results suggest that sumoylation, which has been implicated primarily in processes in the nucleus and nuclear pore, also modulates a key enzyme–substrate signalling complex that regulates metabolism and cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTP1B undergoes sumoylation in cells.
Figure 2: FLIM analysis of PTP1B and SUMO-1.
Figure 3: Mapping sumoylation sites on PTP1B.
Figure 4: Sumoylation of PTP1B reduces its catalytic activity.
Figure 5: Regulation of PTP1B through sumoylation.

Similar content being viewed by others

References

  1. Bourdeau, A., Dube, N. & Tremblay, M. L. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr. Opin. Cell Biol. 17, 203–209 (2005).

    Article  CAS  Google Scholar 

  2. Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol. 22, 5222–5234 (2002).

    Article  CAS  Google Scholar 

  3. Liu, F., Hill, D. E. & Chernoff, J. Direct binding of the proline rich region of protein tyrosine phosphatase 1B to the src homology 3 domain of p130Cas. J. Biol. Chem. 271, 31290–31295 (1996).

    Article  CAS  Google Scholar 

  4. Goldstein, B. J., Bittner-Kowalczyk, A., White, M. F. & Harbeck, M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem. 275, 4283–4289 (2000).

    Article  CAS  Google Scholar 

  5. Cheng, A., Bal, G. S., Kennedy, B. P. & Tremblay, M. L. Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J. Biol. Chem. 276, 25848–25855 (2001).

    Article  CAS  Google Scholar 

  6. Takino, T. et al. Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. J. Cell Sci. 116, 3145–3155 (2003).

    Article  CAS  Google Scholar 

  7. Golemis, E. A., Gyuris, J. & Brent, R. in Interaction Trap/Two-Hybrid system to identify interacting proteins. (eds Ausubel, F. M. et al.) (John Wiley and Sons, New York, 1994).

    Google Scholar 

  8. Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D. & Neel, B. G. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J. Biol. Chem. 278, 739–744 (2003).

    Article  CAS  Google Scholar 

  9. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).

    Article  CAS  Google Scholar 

  10. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  Google Scholar 

  11. Bylebyl, G. R., Belichenko, I. & Johnson, E. S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120 (2003).

    Article  CAS  Google Scholar 

  12. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  13. Kim, Y. H. et al. Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Lett 579, 6272–6278 (2005).

    Article  CAS  Google Scholar 

  14. Liu, B. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunol. 5, 891–898 (2004).

    Article  CAS  Google Scholar 

  15. Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A. & Neel, B. G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its amino acid C-terminal sequence. Cell 68, 545–560 (1992).

    Article  CAS  Google Scholar 

  16. Woodford-Thomas, T. A., Rhodes, J. D. & Dixon, J. E. Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. J. Cell. Biol. 117, 401–414 (1992).

    Article  CAS  Google Scholar 

  17. Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  Google Scholar 

  18. Saitoh, N. et al. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp. Cell Res. 312, 1418–1430 (2006).

    Article  CAS  Google Scholar 

  19. Ng, T. et al. Imaging PKC-α activation in cells. Science 283, 2085–2089 (1999).

    Article  CAS  Google Scholar 

  20. Ganesan, S., Ameer-beg, S. M., Ng, T. T. C., Vojnovic, B. & Wouters, F. S. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Forster resonance energy transfer with GFP. Proc. Natl Acad. Sci. USA 103, 4089–4094 (2006).

    Article  CAS  Google Scholar 

  21. Zhao, Y., Kwon, S. W., Anselmo, A., Kaur, K. & White, M. A. Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem. 279, 20999–1002 (2004).

    Article  CAS  Google Scholar 

  22. Melchior, F. SUMO — nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000).

    Article  CAS  Google Scholar 

  23. Wiesmann, C. et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nature Struct. Mol. Biol. 11, 730–737 (2004).

    Article  CAS  Google Scholar 

  24. Uchimura, Y., Nakamura, M., Sugasawa, K., Nakao, M. & Saitoh, H. Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal. Biochem. 331, 204–206 (2004).

    CAS  Google Scholar 

  25. Dadke, S. & Chernoff, J. Protein-tyrosine phosphatase 1B mediates the effects of insulin on the actin cytoskeleton in immortalized fibroblasts. J. Biol. Chem. 278, 40607–40611 (2003).

    Article  CAS  Google Scholar 

  26. Liu, F. & Chernoff, J. Suppression of oncogene-mediated transformation of rat 3Y1 fibroblasts by protein tyrosine phosphatase 1B requires a functional SH3-ligand. Mol. Cell. Biol. 18, 250–259 (1998).

    Article  CAS  Google Scholar 

  27. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  28. Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  Google Scholar 

  29. Peter, M. et al. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J. 88, 1224–1237 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Guacci, A. Kikuchi, S. Michaelis, J. Palvimo, M. White and H. Yokosawa for their gifts of reagents, and D. Dadke for her assistance. This work was supported by grants from the National Institutes of Health (B.G.N., K.S. and J.C), an endowment fund from the Richard Dimbleby Cancer Fund to King's College London (T.N.), a National Cancer Institute CORE grant to the Fox Chase Cancer Center, and an appropriation from the Commonwealth of Pennsylvania. The multiphoton FLIM system was built with support from both the Medical Research Council Co-Operative Group grant (G0100152 ID 56891) and an UK Research Councils Basic Technology Research Programme grant (GR/R87901/01).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and J.C. conceived the project and prepared most of the manuscript. S.D., S.C., S.-C.Y. and Z.M.J. performed the biochemical and cellular analyses. T.N. carried out the FLIM experiments shown in Fig. 2. F.H., A.I., F.R., K.S. and B.G.N. provided key reagents, cell lines and/or advice.

Corresponding author

Correspondence to Jonathan Chernoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadke, S., Cotteret, S., Yip, SC. et al. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 9, 80–85 (2007). https://doi.org/10.1038/ncb1522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1522

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing