Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery

Abstract

Centrins are calmodulin-like proteins that function in the duplication of microtubule-organizing centres. Here we describe a new function of the yeast centrin Cdc31. We show that overproduction of a sequence, termed CID, in the carboxy-terminal domain of the nuclear export factor Sac3 titrates Cdc31, causing a dominant-lethal phenotype and a block in spindle pole body (SPB) duplication. Under normal conditions, the CID motif recruits Cdc31 and Sus1 (a subunit of the SAGA transcription complex) to the Sac3–Thp1 complex, which functions in mRNA export together with specific nucleoporins at the nuclear basket. A previously reported cdc31 temperature-sensitive allele, which is neither defective in SPB duplication nor Kic1 kinase activation, induces mRNA export defects. Thus, Cdc31 has an unexpected link to the mRNA export machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of the Sac3 CID motif produces a dominant-negative phenotype.
Figure 2: Overexpressed Sac3CID recruits Cdc31.
Figure 3: Overexpressed Sac3CID causes cell-cycle defects that can be rescued by high copy CDC31.
Figure 4: Cdc31 is a component of the Sac3–Thp1–Sus1 complex.
Figure 5: Cdc31 associates with the nuclear envelope and cdc31 mutants accumulate poly(A)+ RNA inside the nucleus.
Figure 6: Deletion of the CID motif from Sac3 causes mRNA export defects and release from the nuclear pores.
Figure 7: The CID motif of Sac3 is necessary to recruit Cdc31 and Sus1 to Sac3–Thp1.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  Google Scholar 

  2. Maniatis, T. & Reed, R. An extensive network of coupling between gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  3. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003).

    Article  CAS  Google Scholar 

  4. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    Article  CAS  Google Scholar 

  5. Reed, R. & Hurt, E.C. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).

    Article  CAS  Google Scholar 

  6. Jensen, T.H., Dower, K., Libri, D. & Rosbash, M. Early formation of mRNP. License for export or quality control? Mol. Cell 11, 1129–1138 (2003).

    Article  CAS  Google Scholar 

  7. Zenklusen, D., Vinciguerra, P., Strahm, Y. & Stutz, F. The yeast hnRNP-like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol. Cell. Biol. 21, 4219–4232 (2001).

    Article  CAS  Google Scholar 

  8. Sträßer, K. & Hurt, E.C. Yra1p, a conserved nuclear RNA binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).

    Article  Google Scholar 

  9. Stutz, F. et al. REF, an evolutionarily conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    Article  CAS  Google Scholar 

  10. Rodrigues, J.P. et al. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc. Natl Acad. Sci. USA 98, 1030–1035 (2001).

    Article  CAS  Google Scholar 

  11. Sträßer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  Google Scholar 

  12. Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).

    Article  Google Scholar 

  13. Hurt, E., Luo, M.J., Rother, S., Reed, R. & Strasser, K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl Acad. Sci. USA 101, 1858–1862 (2004).

    Article  CAS  Google Scholar 

  14. Kim, M., Ahn, S.H., Krogan, N.J., Greenblatt, J.F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).

    Article  CAS  Google Scholar 

  15. Zenklusen, D., Vinciguerra, P., Wyss, J.C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell Biol. 22, 8241–8253 (2002).

    Article  CAS  Google Scholar 

  16. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  Google Scholar 

  17. Fischer, T. et al. The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852 (2002).

    Article  CAS  Google Scholar 

  18. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. The Nab2p and the Thp1p–Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232 (2003).

    Article  CAS  Google Scholar 

  19. Lei, P. et al. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell 14, 836–847 (2003).

    Article  CAS  Google Scholar 

  20. Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004).

    Article  CAS  Google Scholar 

  21. Novick, P., Osmond, B.C. & Botstein, D. Suppressors of yeast actin mutations. Genetics 121, 659–674 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, A.L. et al. SAC3 may link nuclear protein export to cell cycle progression. Proc. Natl Acad. Sci. USA 97, 3224–3229 (2000).

    Article  CAS  Google Scholar 

  23. Gallardo, M. & Aguilera, A. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics 157, 79–89 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Biggins, S. & Rose, M.D. Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J. Cell Biol. 125, 843–852 (1994).

    Article  CAS  Google Scholar 

  25. Spang, A., Courtney, I., Fackler, U., Matzner, M. & Schiebel, E. The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J. Cell Biol. 123, 405–416 (1993).

    Article  CAS  Google Scholar 

  26. Spang, A., Courtney, I., Grein, K., Matzner, M. & Schiebel, E. The cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J. Cell Biol. 128, 863–878 (1995).

    Article  CAS  Google Scholar 

  27. Donaldson, A.D. & Kilmartin, J.V. Spc42p: A phosphorylated component of the S. cerevisiae spindle pole body (SPB) with an essential function during SPB duplication. J. Cell Biol. 132, 887–901 (1996).

    Article  CAS  Google Scholar 

  28. Kilmartin, J.V. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162, 1211–1221 (2003).

    Article  CAS  Google Scholar 

  29. Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  Google Scholar 

  30. Ivanovska, I. & Rose, M.D. Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication. Genetics 157, 503–518 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26, 942–947 (1998).

    Article  CAS  Google Scholar 

  32. Baum, P., Furlong, C. & Byers, B. Yeast gene required for spindle pole body duplication: Homology of its product with calcium binding proteins. Proc. Natl Acad. Sci. USA 83, 5512–5516 (1986).

    Article  CAS  Google Scholar 

  33. Paoletti, A. et al. Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol. Biol. Cell 14, 2793–2808 (2003).

    Article  CAS  Google Scholar 

  34. Araki, M. et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276, 18665–18672 (2001).

    Article  CAS  Google Scholar 

  35. Pulvermuller, A. et al. Calcium-dependent assembly of centrin-G-protein complex in photoreceptor cells. Mol. Cell. Biol. 22, 2194–2203 (2002).

    Article  CAS  Google Scholar 

  36. Sullivan, D.S., Biggins, S. & Rose, M.D. The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J. Cell Biol. 143, 751–765 (1998).

    Article  CAS  Google Scholar 

  37. Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265–275 (1996).

    Article  CAS  Google Scholar 

  38. Geier, B.M., Wiech, H. & Schiebel, E. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. J. Biol. Chem. 271, 28366–28374 (1996).

    Article  CAS  Google Scholar 

  39. Huisinga, K.L. & Pugh, B.F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004).

    Article  CAS  Google Scholar 

  40. Echevarria, W., Leite, M.F., Guerra, M.T., Zipfel, W.R. & Nathanson, M.H. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nature Cell Biol. 5, 440–446 (2003).

    Article  CAS  Google Scholar 

  41. Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  42. Baßler, J. et al. Identification of a 60S pre-ribosomal particle that is closely linked to nuclear export. Mol. Cell 8, 517–529 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the following for technical assistance: E.-M. Lammer, M. Schneider and S. Brettschneider in the Hurt laboratory and S. Merker and P. Ihrig in the Lechner laboratory (Mass Spectrometry Unit, BZH, Heidelberg). E.C.H. was supported by grants from the Deutsche Forschungsgemeinschaft (SFB638, Leibniz-Programm) and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, T., Rodríguez-Navarro, S., Pereira, G. et al. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6, 840–848 (2004). https://doi.org/10.1038/ncb1163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1163

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing