Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP

Abstract

Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles1,2. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains1,3,4,5,6,7. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intersectin-l has guanine-nucleotide exchange factor (GEF) activity towards Cdc42.
Figure 2: Intersectin-l causes a Cdc42 activation phenotype in Swiss 3T3 fibroblasts and N1E-115 neuroblastoma cells.
Figure 3: Intersectin-l stimulates actin nucleation through N-WASP-dependent activation of Arp2/3.
Figure 4: N-WASP interactions with intersectin-l.
Figure 5: Intersectin-l guanine-nucleotide exchange factor (GEF) activity is upregulated by N-WASP binding.

Similar content being viewed by others

References

  1. Sengar, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. EMBO J. 18, 1159–1171 (1999).

    Article  CAS  Google Scholar 

  2. Simpson, F. et al. Nature Cell Biol. 1, 119–124 (1999).

    Article  CAS  Google Scholar 

  3. Guipponi, M., Scott, H. S., Chen, H., Schebesta, A., Rossier, C. & Antonarakis, S. E. Genomics 53, 369–376 (1998).

    Article  CAS  Google Scholar 

  4. Roos, J. & Kelly, R. B. J. Biol. Chem. 273, 19108–19119 (1998).

    Article  CAS  Google Scholar 

  5. Yamabhai, M. et al. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  CAS  Google Scholar 

  6. Okamoto, M., Schoch, S. & Sudhof, T. C. J. Biol. Chem. 274, 18446–18454 (1999).

    Article  CAS  Google Scholar 

  7. Hussain, N. K. et al. J. Biol. Chem. 274, 15671–15677 (1999).

    Article  CAS  Google Scholar 

  8. Whitehead, I. P., Campbell, S., Rossman, K. L. & Der, C. J. Biochim. Biophys. Acta 1332, 1–23 (1997).

    Google Scholar 

  9. Van Aelst, L. & D'Souza-Schorey, C. Genes Dev. 15, 2295–2322 (1997).

    Article  Google Scholar 

  10. Hall, A. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  11. Hart, M. J. et al. J. Biol. Chem. 269, 62–65 (1994).

    CAS  PubMed  Google Scholar 

  12. Nobes, C. D. & Hall, A. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  13. Lamarche, N. et al. Cell 87, 519–529 (1996).

    Article  CAS  Google Scholar 

  14. Burbelo, P. D., Drechsel, D. & Hall, A. J. Biol. Chem. 270, 29071–29074 (1995).

    Article  CAS  Google Scholar 

  15. Symons, M. et al. Cell 84, 723–734 (1996).

    Article  CAS  Google Scholar 

  16. Kozma R., Sarner, S., Ahmed, S. & Lim, L. Mol. Cell Biol. 17, 1201–1211 (1997).

    Article  CAS  Google Scholar 

  17. Sarner, S., Kozma, R., Ahmed, S. & Lim, L. Mol. Cell Biol. 20, 158–172 (2000).

    Article  CAS  Google Scholar 

  18. Miki, H., Miura, K. & Takenawa, T. EMBO J. 15, 5326–5335 (1996).

    Article  Google Scholar 

  19. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  20. Machesky, L. M. & Insall, R. H. J. Cell Biol. 146, 267–272 (1999).

    Article  CAS  Google Scholar 

  21. Glogauer, M., Hartwig, J. & Stossel, T. J. Cell Biol. 150, 785–796 (2000).

    Article  CAS  Google Scholar 

  22. Taunton, J. et al. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  Google Scholar 

  23. de Heuvel, E., Bell, A. W., Ramjaun, A. R., Wong, K., Sossin, W. S. & McPherson, P. S. J. Biol. Chem. 272, 8710–8716 (1997).

    Article  CAS  Google Scholar 

  24. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H. & Kranenburg, O. J. Biol. Chem. 276, 4948–4956 (2001).

    Article  CAS  Google Scholar 

  25. Kiyono, M., Satoh, T. & Kaziro, Y. Proc. Natl. Acad. Sci. USA 96, 4826–4831 (1999).

    Article  CAS  Google Scholar 

  26. Scita, G. et al. Nature 401, 290–293 (1999).

    Article  CAS  Google Scholar 

  27. Qualmann, B., Kessels, M. M. & Kelly, R. B. J. Cell Biol. 150, 111–116 (2000).

    Article  Google Scholar 

  28. De Camilli, P., Slepnev, V. I., Shupliakov, O. & Brodin, L. M. in Synapses (eds Cowan, T. et al.) 217–274 (The Johns Hopkins University Press, 2000).

    Google Scholar 

  29. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Nature Cell Biol. 1, 1–7 (1999).

    Article  CAS  Google Scholar 

  30. Roos, J & Kelly, R. B. Curr. Biol. 9, 1411–1414 (1999).

    Article  CAS  Google Scholar 

  31. Merrifield, C. J. et al. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  Google Scholar 

  32. Duncan, M. C., Cope, M. J. T. V., Goode, B. L., Wendland, B. & Drubin, D. G. Nature Cell Biol. 3, 687–690 (2001).

    Article  CAS  Google Scholar 

  33. Pucharcos, C., Estivill, X. & de la Luna, S. FEBS Lett. 478, 43–51 (2000).

    Article  CAS  Google Scholar 

  34. Micheva, K. D., Kay, B. K. & McPherson, P. S. J. Biol. Chem. 272, 27239–27245 (1997).

    Article  CAS  Google Scholar 

  35. McPherson, P. S. et al. Proc. Natl. Acad. Sci. USA 91, 6486–6490 (1994).

    Article  CAS  Google Scholar 

  36. Tong, X.-K. et al. EMBO J. 19, 1263–1271 (2000).

    Article  CAS  Google Scholar 

  37. Lamarche-Vane, N. & Hall, A. J. Biol. Chem. 273, 29172–29177 (1998).

    Article  CAS  Google Scholar 

  38. Horii, Y., Beeler, J. F., Sakaguchi, K., Tachibana, M. and Miki, T. EMBO J. 13, 4776–4786 (1994).

    Article  CAS  Google Scholar 

  39. Hartwig, J. H. J. Cell Biol. 118, 1421–1442 (1992).

    Article  CAS  Google Scholar 

  40. Maycox, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. J. Cell Biol. 118, 1379–1388 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Miki, and M. Olson for important reagents used in this study. We also thank J. Bergeron and D. A. Schafer for discussion and J. Presley for assistance with confocal microscopy. This research was supported by Canadian Institutes of Health Research (CIHR) grants to P.S.M. and N.L.-V., and by a National Cancer Institute of Canada Grant to N.L.-V. P.S.M. and N.L.-V. acknowledge support from the Canadian Foundation for Innovation. T.P.S. is supported by a USPHS grant and by the Edwin S. Webster Foundation. C.C.Q. is supported by a NINDS grant to S. Hockfield of Yale University. N.K.H. and S.W. are supported by studentships from the Fonds De La Recherche En Santé Du Québec and the Natural Sciences and Engineering Research Council, respectively. S.J. is a CIHR postdoctoral fellow. N.L.-V. is a Junior Scholar of the Fonds De La Recherche En Santé Du Québec. P.S.M. is a CIHR Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. McPherson.

Supplementary information

Supplementary methods and figures

Method S1 Production of cDNA constructs. (PDF 471 kb)

Figure S1 Myc-tagged Cdc42 binds to the DH domain of intersectin-l.

Figure S2 Intersectin-l tail constructs cause a Cdc42 activation phenotype in Swiss 3T3 fibroblasts.

Figure S3 Intersectin-l tail constructs stimulate neurite outgrowth in N1E-115 cells.

Figure S4 Overlay of N-WASP with intersectin SH3 domains.

Figure S5 Co-immunoprecipitation of intersectin-l and N-WASP from co-transfected cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, N., Jenna, S., Glogauer, M. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 3, 927–932 (2001). https://doi.org/10.1038/ncb1001-927

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing