Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation

Abstract

We report a method for large-scale absolute protein expression measurements (APEX) and apply it to estimate the relative contributions of transcriptional- and translational-level gene regulation in the yeast and Escherichia coli proteomes. APEX relies upon correcting each protein's mass spectrometry sampling depth (observed peptide count) by learned probabilities for identifying the peptides. APEX abundances agree with measurements from controls, western blotting, flow cytometry and two-dimensional gels, as well as known correlations with mRNA abundances and codon bias, providing absolute protein concentrations across approximately three to four orders of magnitude. Using APEX, we demonstrate that 73% of the variance in yeast protein abundance (47% in E. coli) is explained by mRNA abundance, with the number of proteins per mRNA log-normally distributed about 5,600 (540 in E. coli) protein molecules/mRNA. Therefore, levels of both eukaryotic and prokaryotic proteins are set per mRNA molecule and independently of overall protein concentration, with >70% of yeast gene expression regulation occurring through mRNA-directed mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absolute protein expression (APEX) profiling exploits the proportionality between the fractions of peptides expected and observed from a given protein.
Figure 2: APEX measurements are both reproducible and consistent with other abundance measurements.
Figure 3: APEX is a sensitive measure of differential expression.
Figure 4: mRNA abundance explains over 70% of variance in yeast protein abundance and about half of variance in E. coli protein abundance.
Figure 5: Yeast protein per mRNA ratios are correlated with amino acid frequencies and variance in molecular weight.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Steen, H. & Pandey, A. Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol. 20, 361–364 (2002).

    Article  CAS  Google Scholar 

  2. Washburn, M.P., Wolters, D. & Yates, J.R., III . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  3. Hunt, D.F., Yates, J.R., III, Shabanowitz, J., Winston, S. & Hauer, C.R. Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237 (1986).

    Article  CAS  Google Scholar 

  4. Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J. & Gygi, S.P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50 (2003).

    Article  CAS  Google Scholar 

  5. Silva, J.C., Gorenstein, M.V., Li, G.Z., Vissers, J.P. & Geromanos, S.J. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 5, 144–156 (2006).

    Article  CAS  Google Scholar 

  6. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  7. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  8. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  9. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  Google Scholar 

  10. Gao, J., Friedrichs, M.S., Dongre, A.R. & Opiteck, G.J. Guidelines for the routine application of the Peptide hits technique. J. Am. Soc. Mass Spectrom. 16, 1231–1238 (2005).

    Article  CAS  Google Scholar 

  11. Liu, H., Sadygov, R.G. & Yates, J.R., III . A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    Article  CAS  Google Scholar 

  12. States, D.J. et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol. 24, 333–338 (2006).

    Article  CAS  Google Scholar 

  13. Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272 (2005).

    Article  CAS  Google Scholar 

  14. Rappsilber, J., Ryder, U., Lamond, A.I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

    Article  CAS  Google Scholar 

  15. Craig, R., Cortens, J.P. & Beavis, R.C. The use of proteotypic peptide libraries for protein identification. Rapid Commun. Mass Spectrom. 19, 1844–1850 (2005).

    Article  CAS  Google Scholar 

  16. Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol. 6, 577–583 (2005).

    Article  CAS  Google Scholar 

  17. Tang, H. et al. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics 22, e481–e488 (2006).

    Article  CAS  Google Scholar 

  18. Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357–7368 (1999).

    Article  CAS  Google Scholar 

  19. Lopez-Campistrous, A. et al. Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell. Proteomics 4, 1205–1209 (2005).

    Article  CAS  Google Scholar 

  20. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  21. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature (2006).

  22. Fievet, J. et al. Assessing factors for reliable quantitative proteomics based on two-dimensional gel electrophoresis. Proteomics 4, 1939–1949 (2004).

    Article  CAS  Google Scholar 

  23. Thiele, D. et al. Elongation factor 1 alpha from Saccharomyces cerevisiae. Rapid large-scale purification and molecular characterization. J. Biol. Chem. 260, 3084–3089 (1985).

    CAS  PubMed  Google Scholar 

  24. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117–117.8 (2003).

    Article  Google Scholar 

  25. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  26. Kal, A.J. et al. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol. Biol. Cell 10, 1859–1872 (1999).

    Article  CAS  Google Scholar 

  27. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 (1997).

    Article  CAS  Google Scholar 

  28. Robinson, M.D., Grigull, J., Mohammad, N. & Hughes, T.R. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3, 35–40 (2002).

    Article  Google Scholar 

  29. Natarajan, K. et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347–4368 (2001).

    Article  CAS  Google Scholar 

  30. Allen, T.E. et al. Genome-scale analysis of the uses of the Escherichia coli genome: model-driven analysis of heterogeneous data sets. J. Bacteriol. 185, 6392–6399 (2003).

    Article  CAS  Google Scholar 

  31. Corbin, R.W. et al. Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc. Natl. Acad. Sci. USA 100, 9232–9237 (2003).

    Article  CAS  Google Scholar 

  32. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  33. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  34. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  Google Scholar 

  35. Beyer, A., Hollunder, J., Nasheuer, H.P. & Wilhelm, T. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics 3, 1083–1092 (2004).

    Article  CAS  Google Scholar 

  36. Washburn, M.P. et al. Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3107–3112 (2003).

    Article  CAS  Google Scholar 

  37. Griffin, T.J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

    Article  CAS  Google Scholar 

  38. Sloan, J.S., Dombek, K.M. & Young, E.T. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J. Biol. Chem. 274, 37575–37582 (1999).

    Article  CAS  Google Scholar 

  39. Petersen, J.G. & Holmberg, S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids Res. 14, 9631–9651 (1986).

    Article  CAS  Google Scholar 

  40. Holmberg, S. & Petersen, J.G. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 13, 207–217 (1988).

    Article  CAS  Google Scholar 

  41. Werner, M., Feller, A., Messenguy, F. & Pierard, A. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell 49, 805–813 (1987).

    Article  CAS  Google Scholar 

  42. Prince, J.T., Carlson, M.W., Wang, R., Lu, P. & Marcotte, E.M. The need for a public proteomics repository. Nat. Biotechnol. 22, 471–472 (2004).

    Article  CAS  Google Scholar 

  43. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3889–3894 (2003).

    Article  CAS  Google Scholar 

  44. Allemeersch, J. et al. Benchmarking the CATMA microarray. A novel tool for Arabidopsis transcriptome analysis. Plant Physiol. 137, 588–601 (2005).

    Article  CAS  Google Scholar 

  45. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E.K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).

    Article  CAS  Google Scholar 

  46. Rogers, S., Wells, R. & Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368 (1986).

    Article  CAS  Google Scholar 

  47. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  48. Neidhardt, F.C. & Umbarger, H.E. in Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology, edn. 2, vol. 1 (eds. Neidhardt, F.C. et al.) 13–16 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  49. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  50. Yi, E.C. et al. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis 23, 3205–3216 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Prince and Aleksey Nakorchevskiy for valuable discussion and help with computational analysis of peptide fragmentation. This work was supported by grants from the Welch (F-1515) and Packard Foundations, the National Science Foundation and National Institutes of Health. C.V. acknowledges support by the International Human Frontier of Science Program.

Author information

Authors and Affiliations

Authors

Contributions

E.M.M. designed the project; P.L., R.W., X.Y. conducted the experiments; P.L., C.V., R.W., E.M.M. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Edward M Marcotte.

Supplementary information

Supplementary Data 1

Table of Oi values for all yeast proteins, protein abundances, and comparisons with other laboratories' data.

Supplementary Data 2

Table of Oi values for all E. coli proteins, protein abundances, and comparisons with other laboratories' data

Supplementary Data 3

Table of mouse T lymphoma nuclear protein analyses

Supplementary Data 4

Feature data for 4023 yeast peptides for training classifier (Weka .arff format)

Supplementary Data 5

Classifier for predicting peptides observed by mass spectrometry (Weka binary format)

Supplementary Notes

Supporting figures, controls, methods, and additional comparisons of APEX-based protein quantitation to mRNA expression measurements, codon bias, and protein features

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Vogel, C., Wang, R. et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25, 117–124 (2007). https://doi.org/10.1038/nbt1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing