Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection

Abstract

Molecular chaperones protect proteins against environmental and physiologic stress and from the deleterious consequences of an imbalance in protein homeostasis. Many of these stresses, if prolonged, result in defective development and pathologies associated with a diverse array of diseases due to tissue injury and repair including stroke, myocardial reperfusion damage, ischemia, cancer, amyloidosis, and other neurodegenerative diseases. We discuss the molecular nature of the stress signals, the mechanisms that underlie activation of the heat shock response, the role of heat shock proteins as cytoprotective molecules, and strategies for pharmacologically active molecules as regulators of the heat shock response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morimoto, R.I., Jurivich, D.A., Kroeger, R.E., Mathur, S.K., Murphy, S.P., Nakai, A. et al. 1994. Regulation of heat shock gene expression by a family of heat shock factors, in pp 417–455. The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Baeuerle, P.A. and Baltimore, D. 1996. NF-κB: ten years after. Cell 87: 13–20.

    Article  CAS  Google Scholar 

  3. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. 1996. Stress-inducible cellular responses. Birkhauser Verlag, Basel, Switzerland.

    Google Scholar 

  4. Parsell, D.A. and Lindquist, S. 1994. Heat shock proteins and stress tolerance, pp. 457–494, in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  5. Morimoto, R.I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410.

    Article  CAS  Google Scholar 

  6. Lis, J. and Wu, C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4.

    Article  CAS  Google Scholar 

  7. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469.

    Article  CAS  Google Scholar 

  8. Wu, B.J. and Morimoto, R.I. 1985. Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. USA 82: 6070–6074.

    Article  CAS  Google Scholar 

  9. Williams, G.T., McClanahan, T.K., and Morimoto, R.I. 1989. E 1 a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol. 9: 2574–2587.

    Article  CAS  Google Scholar 

  10. Kanei-lshii, C., Tanikawa, J., Nadai, A., Morimoto, R.I., and Ishii, S. 1997. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277: 246–248.

    Article  Google Scholar 

  11. Craig, E. and Gross, C.A., 1991. Hsp the cellular thermometer? Trends Biochem. Sci. 16: 135–140.

    Article  CAS  Google Scholar 

  12. Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  Google Scholar 

  13. Morimoto, R.I., Sarge, K.D., and Abravaya, K. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267: 21987–21990.

    CAS  PubMed  Google Scholar 

  14. Gamer, J., Bujard, H., and Bukau, B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69: 833–842.

    Article  CAS  Google Scholar 

  15. Abravaya, K., Myers, M.P., Murphy, S.P., and Morimoto, R.I. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene transcription. Genes Dev. 6: 1153–1164.

    Article  CAS  Google Scholar 

  16. Shi, Y., Mosser, D.D., and Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654–666.

    Article  CAS  Google Scholar 

  17. Scharf, K.D., Rose, S., Zott, W., Schoff, F., and Nover, L. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.

    Article  CAS  Google Scholar 

  18. Rabindran, S.K., Giorgi, G., Clos, J., and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.

    Article  CAS  Google Scholar 

  19. Sarge, K.D., Zimarino, V., Holm, K., Wu, C., Morimoto, R.I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.

    Google Scholar 

  20. Scheutz, T.J., Gallo, G.J., Sheldon, L., Tempst, P., and Kingston, R.E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88: 6910–6915.

    Google Scholar 

  21. Nakai, A. and Morimoto, R.I. 1993. Characterization of a novel chicken heat shock transcription factor, HSF3, suggests a new regulatory pathway. Mol. Cell Biol. 13: 1983–1997.

    Article  CAS  Google Scholar 

  22. Nakai, A., Kawazoe, Y., Tanabe, M., Nagata, K. and Morimoto, R.I., 1995. DNA-binding properties to two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell Biol. 15: 5268–5278.

    Article  CAS  Google Scholar 

  23. Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R.I., and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell Biol. 17: 469–481.

    Article  CAS  Google Scholar 

  24. Tanabe, M., Kawazoe, Y., Takeda, S., Morimoto, R.I., Nagata, K., and Nakai, A. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and the loss of thermotoleranoe. EMBO J. 17: 1750–1758.

    Article  CAS  Google Scholar 

  25. Kingston, R.E., Scheutz, T.J., and Larin, Z. 1987. Heat-inducible human factor that binds to a human hsp70 promotor. Mol. Cell. Biol. 13: 3370–3383.

    Google Scholar 

  26. Zimarino, V. and Wu, C. 1987. Induction of sequence-specific binding of Drosophilaheat shock activator protein without protein synthesis. Nature 327: 727–730.

    Article  CAS  Google Scholar 

  27. Larson, J.S., Scheutz, T.J., and Kingston, R.E. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375.

    Article  CAS  Google Scholar 

  28. Mosser, D.D., Theodorakis, N.G. and Morimoto, R.I. 1988. Coordinate changes in heat shock element-binding activity and hsp70 gene transcription rates in human cells. Mol. Cell Biol. 8: 4736–4744.

    Article  CAS  Google Scholar 

  29. Sistonen, L., Sarge, K.D., Phillips, B., Abravaya, K., and Morimoto, R. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell Biol. 12: 4104–4111.

    Article  CAS  Google Scholar 

  30. Zimarino, V., Wilson, S., and Wu, C. 1990. Antibody-mediated activation of Drosophilaheat shock factor in vitro. Science 249: 546–549.

    Article  CAS  Google Scholar 

  31. Westwood, J.T., Clos, J., and Wu, C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353: 822–827.

    Article  CAS  Google Scholar 

  32. Westwood, J.T. and Wu, C. 1993. Activation of Drosophilaheat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol. 13: 3481–3486.

    Article  CAS  Google Scholar 

  33. Rallu, M., Loones, M., Lallemand, Y., Morimoto, R.I., Morange, M., and Mezger, V. 1997. Function and regulation of heat shock factor 2 during mouse embryogene-sis. Proc. Natl. Acad. Sci. USA 94: 2392–2397.

    Article  CAS  Google Scholar 

  34. Kline, M.P. and Morimoto, R.I. 1997. Repression of the heat shock factor I tran-scriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell Biol. 17: 2107–2115.

    Article  CAS  Google Scholar 

  35. Jurivich, D.A., Sistonen, L., Droes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.

    Article  CAS  Google Scholar 

  36. Sarge, K.D., Murphy, S.R. and Morimoto, R.I. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol. 13: 1392–1407.

    Article  CAS  Google Scholar 

  37. Cotto, J.J., Kline, M.P., and Morimoto, R.I. 1996. Activation of heat shock factor I DNA binding precedes stress-induced serine phosphorylation: evidence for a multistep pathway of regulation. J. Biol. Chem. 271: 3355–3358.

    Article  CAS  Google Scholar 

  38. Cotto, J.J., Fox, S.G. and Morimoto, R.I. 1997. HSF1 granules: a novel stress-induced nuclear compartment of human cells.J. Cell Sci. 110: 2925–2934.

    CAS  PubMed  Google Scholar 

  39. Jolly, C., Morimoto, R.I., Robert-Nicoud, M. and Vourc'h, C. 1997. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110: 2935–2941.

    CAS  PubMed  Google Scholar 

  40. Satyal, S., Chen, D., Fox, S.G., Kramer, J.M. and Morimoto, R.I. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 12: 1962–1974.

    Article  CAS  Google Scholar 

  41. Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  CAS  Google Scholar 

  42. Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507.

    Article  CAS  Google Scholar 

  43. Schroder, H., Langer, T., Hartl, F.U. and Bukau, B., 1993. DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137–4144.

    Article  CAS  Google Scholar 

  44. Freeman, B.C. and Morimoto, R.I. 1996. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-l have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15: 2969–2979.

    Article  CAS  Google Scholar 

  45. Freeman, B.C., Toft, D.O., and Morimoto, R.I. 1996. Molecular chaperone machines: chaperone activities of the cyclophlin Cyp-40 and the steroid apore-ceptor-associated protein p23. Science 274: 1718–1720.

    Article  CAS  Google Scholar 

  46. Pratt, W.B. and Welsh, M.J. 1994. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol. 5: 83–93.

    Article  CAS  Google Scholar 

  47. Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Ziegelhoffer, T. 1994. Cytosolic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation, pp. 31–52 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  48. Langer, T. and Neupert, W. 1994. Chaperoning mitochondrial biogenesis, pp. 53–84 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  49. Georgopoulos, C., Liberek, K., Zylicz, M., and Ang, D. 1994. Properties of the heat shook proteins of Escherichia coli and the autoregulation of the heat shock response. pp. 209–249 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  50. McKay, D.B., Wilbanks, S.M., Flaherty, K.M., Ha, J., O'Brian, M.C., and Shirvanee, L.L. 1994. Stress-70 proteins and their interaction with nucleotides. pp. 153–177 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  51. Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. . et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614.

    Article  CAS  Google Scholar 

  52. Freeman, B.C., Myers, M.R., Schumacher, R., and Morimoto, R.I. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14: 2281–2292.

    Article  CAS  Google Scholar 

  53. Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. et al. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specifity of BiP. Cell 75: 717–728.

    Article  CAS  Google Scholar 

  54. Hohfeld, J., Minami, Y., and Hartl, F.U., 1995. Hip, a new cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598.

    Article  CAS  Google Scholar 

  55. Takeyama, S., Bimston, D.N., Matsuzawa, S., Freeman, B.C., Aime-Sempe, C., Xie, Z. et al. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16: 4887–4896.

    Article  Google Scholar 

  56. Pratt, W.B., Gehring, U., and Toft, D.O. Molecular chaperoning of steroid hormone receptors. pp. 79–95, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.

    Chapter  Google Scholar 

  57. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. 1986. Specific interactions between the p53 cellular tumour antigen and major heat shock proteins. Nature 320: 182–184.

    Article  CAS  Google Scholar 

  58. Suzue, K. and Young, R.A. 1996. Heat shock proteins as immunological carriers and vaccines. pp. 451–465, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., and Polla, B. (eds.). Birkhauser Verlag, Basel, Switzerland.

    Chapter  Google Scholar 

  59. Mestril, R., Chi, S., Sayen, R., O'Reilly, K., and Dillmann, W.H. 1994. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J. Clin. Invest. 93: 759–767.

    Article  CAS  Google Scholar 

  60. Marber, M.S., Mestril, R., Chi, S.H., Sayen, M.R., Yellon, D.M., and Dillmann, W.H. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95: 1446–1456.

    Article  CAS  Google Scholar 

  61. Plumier, J.C.L., Ross, B.M., Currie, R.W., Angelidis, C.E., Kazlaris, H., Kollias, G. et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95: 1854–1860.

    Article  CAS  Google Scholar 

  62. Morris, S.D., Cumming, D.V., Latchman, D.S., and Yellon, D.M. 1996. Specific induction of the 70-kD heat stress protein by the tyrosine kinase inhibitor her-bimycin-A protects rat neonatal cardiomyocytes. J. Clin. Invest. 97: 706–712.

    Article  CAS  Google Scholar 

  63. Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A. et al. 1997. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med. 3: 1150–1154.

    Article  CAS  Google Scholar 

  64. Jurivich, D.A., Sistonen, L., Kroes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.

    Article  CAS  Google Scholar 

  65. Mathew, A., Mathur, S., and Morimoto, R.I. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin proteasome pathway. Mol. Cell. Biol. 18: 5091–5098.

    Article  CAS  Google Scholar 

  66. Santoro, M.G. 1997. Antiviral activity of cyclopentenone prostanoids. Trends Microbiol. 5: 276–281.

    Article  CAS  Google Scholar 

  67. Lee, B.S., Chen, J., Angelidis, C., Jurivich, D.A., and Moirmoto, R.I. 1995. Pharmacological modulation of Heat Shock Factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA 92: 7207–7211.

    Article  CAS  Google Scholar 

  68. Amici, C., Rossi, A., and Santoro, M.G. 1995. Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res. 55: 4452–4457.

    CAS  PubMed  Google Scholar 

  69. Santoro, M.G., Garaci, E., and Amici, C. 1989. Prostaglandins with antiprolifera-tive activity induce the synthesis of a heat shock protein in human cells. Proc. Natl. Acad. Sci. USA 86: 8407–8411.

    Article  CAS  Google Scholar 

  70. Amici, C., Sistonen, L., Santoro, M.G., and Morimoto, R.I. 1992. Antiproliferative prostaglandins activate heat shock transcription factor. Proc. Natl. Acad. Sci. USA 89: 6227–6231.

    Article  CAS  Google Scholar 

  71. Forman, B.M., Tontonoz, P., Chen, J., Brun, R.R., Spiegelman, B.M., and Evans, R.M. 1995. M.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803–812.

    Article  CAS  Google Scholar 

  72. Rossi, A., Elia, G., and Santoro, M.G. 1997. Inhibition of nuclear factor κB by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc. Natl. Acad. Sci. USA 94: 746–750.

    Article  CAS  Google Scholar 

  73. Rossi, A., Elia, G., and Santoro, M.G. 1996. 2-Cyclopenten-l-one, a new inducer of heat shock protein 70 with antiviral activity. J. Biol. Chem. 271: 32192–32196.

    Article  CAS  Google Scholar 

  74. Santoro, M.G. 1996. Viral infection, pp. 337–357, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.

    Chapter  Google Scholar 

  75. Rozera, C., Carattoli, A., De Marco, A., Amici, C., Giorgi, C. and Santoro, M.G. 1996. Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. J. Clin. Invest. 97: 1795–1803.

    Article  CAS  Google Scholar 

  76. Thanos, D. and Maniatis, T. 1995. NF-κB: a lesson in family values. Cell 80: 529–532.

    Article  CAS  Google Scholar 

  77. Lenardo, M.J. and Baltimore, D. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227–229.

    Article  CAS  Google Scholar 

  78. Rossi, A., Elia, G., and Santoro, M.G. 1998. Activation of the heat shock Factor 1 by serine protease inhibitors: an affect associated with nuclear Factor-κB inhibition. J. Biol. Chem. 273: 16446–16452.

    Article  CAS  Google Scholar 

  79. Vane, J. and O'Grady, J. 1993. Therapeutic applications of prostaglandins, in Edward Arnold (ed.). Hodder & Stroughton Publishers, Sevenoaks, UK.

    Google Scholar 

  80. Sinclair, S.B., Greig, P.D. and Blendis, L.M. et al. 1989. Biochemical and clinical response of fulminant viral hepatitis to administration of prostaglandin E. J. Clin. Invest. 84: 1063–1069.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimoto, R., Santoro, M. Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat Biotechnol 16, 833–838 (1998). https://doi.org/10.1038/nbt0998-833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing