Abstract
Molecular chaperones protect proteins against environmental and physiologic stress and from the deleterious consequences of an imbalance in protein homeostasis. Many of these stresses, if prolonged, result in defective development and pathologies associated with a diverse array of diseases due to tissue injury and repair including stroke, myocardial reperfusion damage, ischemia, cancer, amyloidosis, and other neurodegenerative diseases. We discuss the molecular nature of the stress signals, the mechanisms that underlie activation of the heat shock response, the role of heat shock proteins as cytoprotective molecules, and strategies for pharmacologically active molecules as regulators of the heat shock response.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Morimoto, R.I., Jurivich, D.A., Kroeger, R.E., Mathur, S.K., Murphy, S.P., Nakai, A. et al. 1994. Regulation of heat shock gene expression by a family of heat shock factors, in pp 417–455. The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Baeuerle, P.A. and Baltimore, D. 1996. NF-κB: ten years after. Cell 87: 13–20.
Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. 1996. Stress-inducible cellular responses. Birkhauser Verlag, Basel, Switzerland.
Parsell, D.A. and Lindquist, S. 1994. Heat shock proteins and stress tolerance, pp. 457–494, in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Morimoto, R.I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410.
Lis, J. and Wu, C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4.
Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469.
Wu, B.J. and Morimoto, R.I. 1985. Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. USA 82: 6070–6074.
Williams, G.T., McClanahan, T.K., and Morimoto, R.I. 1989. E 1 a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol. 9: 2574–2587.
Kanei-lshii, C., Tanikawa, J., Nadai, A., Morimoto, R.I., and Ishii, S. 1997. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277: 246–248.
Craig, E. and Gross, C.A., 1991. Hsp the cellular thermometer? Trends Biochem. Sci. 16: 135–140.
Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.
Morimoto, R.I., Sarge, K.D., and Abravaya, K. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267: 21987–21990.
Gamer, J., Bujard, H., and Bukau, B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69: 833–842.
Abravaya, K., Myers, M.P., Murphy, S.P., and Morimoto, R.I. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene transcription. Genes Dev. 6: 1153–1164.
Shi, Y., Mosser, D.D., and Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654–666.
Scharf, K.D., Rose, S., Zott, W., Schoff, F., and Nover, L. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.
Rabindran, S.K., Giorgi, G., Clos, J., and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.
Sarge, K.D., Zimarino, V., Holm, K., Wu, C., Morimoto, R.I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.
Scheutz, T.J., Gallo, G.J., Sheldon, L., Tempst, P., and Kingston, R.E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88: 6910–6915.
Nakai, A. and Morimoto, R.I. 1993. Characterization of a novel chicken heat shock transcription factor, HSF3, suggests a new regulatory pathway. Mol. Cell Biol. 13: 1983–1997.
Nakai, A., Kawazoe, Y., Tanabe, M., Nagata, K. and Morimoto, R.I., 1995. DNA-binding properties to two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell Biol. 15: 5268–5278.
Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R.I., and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell Biol. 17: 469–481.
Tanabe, M., Kawazoe, Y., Takeda, S., Morimoto, R.I., Nagata, K., and Nakai, A. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and the loss of thermotoleranoe. EMBO J. 17: 1750–1758.
Kingston, R.E., Scheutz, T.J., and Larin, Z. 1987. Heat-inducible human factor that binds to a human hsp70 promotor. Mol. Cell. Biol. 13: 3370–3383.
Zimarino, V. and Wu, C. 1987. Induction of sequence-specific binding of Drosophilaheat shock activator protein without protein synthesis. Nature 327: 727–730.
Larson, J.S., Scheutz, T.J., and Kingston, R.E. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375.
Mosser, D.D., Theodorakis, N.G. and Morimoto, R.I. 1988. Coordinate changes in heat shock element-binding activity and hsp70 gene transcription rates in human cells. Mol. Cell Biol. 8: 4736–4744.
Sistonen, L., Sarge, K.D., Phillips, B., Abravaya, K., and Morimoto, R. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell Biol. 12: 4104–4111.
Zimarino, V., Wilson, S., and Wu, C. 1990. Antibody-mediated activation of Drosophilaheat shock factor in vitro. Science 249: 546–549.
Westwood, J.T., Clos, J., and Wu, C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353: 822–827.
Westwood, J.T. and Wu, C. 1993. Activation of Drosophilaheat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol. 13: 3481–3486.
Rallu, M., Loones, M., Lallemand, Y., Morimoto, R.I., Morange, M., and Mezger, V. 1997. Function and regulation of heat shock factor 2 during mouse embryogene-sis. Proc. Natl. Acad. Sci. USA 94: 2392–2397.
Kline, M.P. and Morimoto, R.I. 1997. Repression of the heat shock factor I tran-scriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell Biol. 17: 2107–2115.
Jurivich, D.A., Sistonen, L., Droes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.
Sarge, K.D., Murphy, S.R. and Morimoto, R.I. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol. 13: 1392–1407.
Cotto, J.J., Kline, M.P., and Morimoto, R.I. 1996. Activation of heat shock factor I DNA binding precedes stress-induced serine phosphorylation: evidence for a multistep pathway of regulation. J. Biol. Chem. 271: 3355–3358.
Cotto, J.J., Fox, S.G. and Morimoto, R.I. 1997. HSF1 granules: a novel stress-induced nuclear compartment of human cells.J. Cell Sci. 110: 2925–2934.
Jolly, C., Morimoto, R.I., Robert-Nicoud, M. and Vourc'h, C. 1997. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110: 2935–2941.
Satyal, S., Chen, D., Fox, S.G., Kramer, J.M. and Morimoto, R.I. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 12: 1962–1974.
Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.
Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507.
Schroder, H., Langer, T., Hartl, F.U. and Bukau, B., 1993. DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137–4144.
Freeman, B.C. and Morimoto, R.I. 1996. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-l have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15: 2969–2979.
Freeman, B.C., Toft, D.O., and Morimoto, R.I. 1996. Molecular chaperone machines: chaperone activities of the cyclophlin Cyp-40 and the steroid apore-ceptor-associated protein p23. Science 274: 1718–1720.
Pratt, W.B. and Welsh, M.J. 1994. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol. 5: 83–93.
Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Ziegelhoffer, T. 1994. Cytosolic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation, pp. 31–52 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Langer, T. and Neupert, W. 1994. Chaperoning mitochondrial biogenesis, pp. 53–84 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Georgopoulos, C., Liberek, K., Zylicz, M., and Ang, D. 1994. Properties of the heat shook proteins of Escherichia coli and the autoregulation of the heat shock response. pp. 209–249 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
McKay, D.B., Wilbanks, S.M., Flaherty, K.M., Ha, J., O'Brian, M.C., and Shirvanee, L.L. 1994. Stress-70 proteins and their interaction with nucleotides. pp. 153–177 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. . et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614.
Freeman, B.C., Myers, M.R., Schumacher, R., and Morimoto, R.I. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14: 2281–2292.
Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. et al. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specifity of BiP. Cell 75: 717–728.
Hohfeld, J., Minami, Y., and Hartl, F.U., 1995. Hip, a new cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598.
Takeyama, S., Bimston, D.N., Matsuzawa, S., Freeman, B.C., Aime-Sempe, C., Xie, Z. et al. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16: 4887–4896.
Pratt, W.B., Gehring, U., and Toft, D.O. Molecular chaperoning of steroid hormone receptors. pp. 79–95, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.
Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. 1986. Specific interactions between the p53 cellular tumour antigen and major heat shock proteins. Nature 320: 182–184.
Suzue, K. and Young, R.A. 1996. Heat shock proteins as immunological carriers and vaccines. pp. 451–465, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., and Polla, B. (eds.). Birkhauser Verlag, Basel, Switzerland.
Mestril, R., Chi, S., Sayen, R., O'Reilly, K., and Dillmann, W.H. 1994. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J. Clin. Invest. 93: 759–767.
Marber, M.S., Mestril, R., Chi, S.H., Sayen, M.R., Yellon, D.M., and Dillmann, W.H. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95: 1446–1456.
Plumier, J.C.L., Ross, B.M., Currie, R.W., Angelidis, C.E., Kazlaris, H., Kollias, G. et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95: 1854–1860.
Morris, S.D., Cumming, D.V., Latchman, D.S., and Yellon, D.M. 1996. Specific induction of the 70-kD heat stress protein by the tyrosine kinase inhibitor her-bimycin-A protects rat neonatal cardiomyocytes. J. Clin. Invest. 97: 706–712.
Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A. et al. 1997. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med. 3: 1150–1154.
Jurivich, D.A., Sistonen, L., Kroes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.
Mathew, A., Mathur, S., and Morimoto, R.I. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin proteasome pathway. Mol. Cell. Biol. 18: 5091–5098.
Santoro, M.G. 1997. Antiviral activity of cyclopentenone prostanoids. Trends Microbiol. 5: 276–281.
Lee, B.S., Chen, J., Angelidis, C., Jurivich, D.A., and Moirmoto, R.I. 1995. Pharmacological modulation of Heat Shock Factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA 92: 7207–7211.
Amici, C., Rossi, A., and Santoro, M.G. 1995. Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res. 55: 4452–4457.
Santoro, M.G., Garaci, E., and Amici, C. 1989. Prostaglandins with antiprolifera-tive activity induce the synthesis of a heat shock protein in human cells. Proc. Natl. Acad. Sci. USA 86: 8407–8411.
Amici, C., Sistonen, L., Santoro, M.G., and Morimoto, R.I. 1992. Antiproliferative prostaglandins activate heat shock transcription factor. Proc. Natl. Acad. Sci. USA 89: 6227–6231.
Forman, B.M., Tontonoz, P., Chen, J., Brun, R.R., Spiegelman, B.M., and Evans, R.M. 1995. M.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803–812.
Rossi, A., Elia, G., and Santoro, M.G. 1997. Inhibition of nuclear factor κB by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc. Natl. Acad. Sci. USA 94: 746–750.
Rossi, A., Elia, G., and Santoro, M.G. 1996. 2-Cyclopenten-l-one, a new inducer of heat shock protein 70 with antiviral activity. J. Biol. Chem. 271: 32192–32196.
Santoro, M.G. 1996. Viral infection, pp. 337–357, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.
Rozera, C., Carattoli, A., De Marco, A., Amici, C., Giorgi, C. and Santoro, M.G. 1996. Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. J. Clin. Invest. 97: 1795–1803.
Thanos, D. and Maniatis, T. 1995. NF-κB: a lesson in family values. Cell 80: 529–532.
Lenardo, M.J. and Baltimore, D. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227–229.
Rossi, A., Elia, G., and Santoro, M.G. 1998. Activation of the heat shock Factor 1 by serine protease inhibitors: an affect associated with nuclear Factor-κB inhibition. J. Biol. Chem. 273: 16446–16452.
Vane, J. and O'Grady, J. 1993. Therapeutic applications of prostaglandins, in Edward Arnold (ed.). Hodder & Stroughton Publishers, Sevenoaks, UK.
Sinclair, S.B., Greig, P.D. and Blendis, L.M. et al. 1989. Biochemical and clinical response of fulminant viral hepatitis to administration of prostaglandin E. J. Clin. Invest. 84: 1063–1069.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Morimoto, R., Santoro, M. Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat Biotechnol 16, 833–838 (1998). https://doi.org/10.1038/nbt0998-833
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt0998-833
This article is cited by
-
Sex differences in hearing impairment due to diet-induced obesity in CBA/Ca mice
Biology of Sex Differences (2023)
-
Proteins from toad’s parotoid macroglands: do they play a role in gland functioning and chemical defence?
Frontiers in Zoology (2023)
-
Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation
Nature Communications (2023)
-
Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence?
Cell Stress and Chaperones (2023)
-
Physiological, Biochemical, and Gene Expression Responses of Sugarcane Under Cold, Drought and Salt Stresses
Journal of Plant Growth Regulation (2023)