Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ChIP-nexus enables improved detection of in vivo transcription factor binding footprints

Abstract

Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode and single ligation), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max—shows that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs, and allows for the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA-sequence features such as DNA shape. ChIP-nexus will be broadly applicable to the study of in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superior performance of ChIP-nexus in discovering relevant binding footprints for transcription factors.
Figure 2: High reproducibility, resolution and specificity of ChIP-nexus as compared to ChIP-seq.
Figure 3: Analysis of Dorsal, Twist and Max in vivo footprints.
Figure 4: Favored interaction side of Max at E-box motifs correlates with DNA features in the flanking sequences.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Sequence Read Archive

References

  1. Spitz, F. & Furlong, E.E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  Google Scholar 

  2. Bardet, A.F. et al. Identification of transcription factor binding sites from ChIP-seq data at high resolution. Bioinformatics 29, 2705–2713 (2013).

    Article  CAS  Google Scholar 

  3. Rhee, H.S. & Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    Article  CAS  Google Scholar 

  4. Rhee, H.S. & Pugh, B.F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. Chapter 21, Unit 21.24 (2012).

  5. Rhee, H.S. & Pugh, B.F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    Article  CAS  Google Scholar 

  6. Yen, K., Vinayachandran, V., Batta, K., Koerber, R.T. & Pugh, B.F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).

    Article  CAS  Google Scholar 

  7. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  8. Casbon, J.A., Osborne, R.J., Brenner, S. & Lichtenstein, C.P. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 39, e81 (2011).

    Article  CAS  Google Scholar 

  9. Venters, B.J. & Pugh, B.F. Genomic organization of human transcription initiation complexes. Nature 502, 53–58 (2013).

    Article  CAS  Google Scholar 

  10. Serandour, A.A., Brown, G.D., Cohen, J.D. & Carroll, J.S. Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biol. 14, R147 (2013).

    Article  Google Scholar 

  11. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  12. Huang, J.D., Schwyter, D.H., Shirokawa, J.M. & Courey, A.J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7, 694–704 (1993).

    Article  CAS  Google Scholar 

  13. Fakhouri, W.D. et al. Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo. Mol. Syst. Biol. 6, 341 (2010).

    Article  Google Scholar 

  14. Ip, Y.T., Park, R.E., Kosman, D., Bier, E. & Levine, M. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728–1739 (1992).

    Article  CAS  Google Scholar 

  15. Zinzen, R.P., Senger, K., Levine, M. & Papatsenko, D. Computational models for neurogenic gene expression in the Drosophila embryo. Curr. Biol. 16, 1358–1365 (2006).

    Article  CAS  Google Scholar 

  16. Szymanski, P. & Levine, M. Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J. 14, 2229–2238 (1995).

    Article  CAS  Google Scholar 

  17. Ozdemir, A. et al. High resolution mapping of Twist to DNA in Drosophila embryos: efficient functional analysis and evolutionary conservation. Genome Res. 21, 566–577 (2011).

    Article  CAS  Google Scholar 

  18. Liu, X., Lee, C.K., Granek, J.A., Clarke, N.D. & Lieb, J.D. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res. 16, 1517–1528 (2006).

    Article  CAS  Google Scholar 

  19. Gordân, R. et al. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep. 3, 1093–1104 (2013).

    Article  Google Scholar 

  20. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X.S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  CAS  Google Scholar 

  21. Blackwood, E.M. & Eisenman, R.N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  Google Scholar 

  22. Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  Google Scholar 

  23. Ferré-D'Amaré, A.R., Prendergast, G.C., Ziff, E.B. & Burley, S.K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 (1993).

    Article  Google Scholar 

  24. Nair, S.K. & Burley, S.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    Article  CAS  Google Scholar 

  25. Walhout, A.J., Gubbels, J.M., Bernards, R., van der Vliet, P.C. & Timmers, H.T. c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene. Nucleic Acids Res. 25, 1493–1501 (1997).

    Article  CAS  Google Scholar 

  26. Wechsler, D.S., Papoulas, O., Dang, C.V. & Kingston, R.E. Differential binding of c-Myc and Max to nucleosomal DNA. Mol. Cell. Biol. 14, 4097–4107 (1994).

    Article  CAS  Google Scholar 

  27. Zhu, L.J. et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 39, D111–D117 (2011).

    Article  CAS  Google Scholar 

  28. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    Article  CAS  Google Scholar 

  29. Yang, L. et al. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 42, D148–D155 (2014).

    Article  CAS  Google Scholar 

  30. Zhou, T. et al. DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res. 41, W56–W62 (2013).

    Article  Google Scholar 

  31. Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).

    Article  CAS  Google Scholar 

  32. White, M.A., Myers, C.A., Corbo, J.C. & Cohen, B.A. Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks. Proc. Natl. Acad. Sci. USA 110, 11952–11957 (2013).

    Article  CAS  Google Scholar 

  33. Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev. 21, 436–449 (2007).

    Article  CAS  Google Scholar 

  34. Zeitlinger, J. et al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev. 21, 385–390 (2007).

    Article  CAS  Google Scholar 

  35. He, Q. et al. High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat. Genet. 43, 414–420 (2011).

    Article  CAS  Google Scholar 

  36. Martin, M. Cutadapt removes adaptor sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  37. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  38. R Development Core Team R: a language and environment for statistical computing. http://www.R-project.org/ (2013).

  39. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  40. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Blanchette and A. Stark for discussions and R. Krumlauf and R. Mohan for critical comments on the manuscript. This work was funded by the US National Institutes of Health (New Innovator Award 1DP2 OD004561 to J.Z.) and the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

Q.H. and J.Z. conceived and designed the ChIP-nexus protocol. Q.H. performed all experiments. J.J. developed all computational analysis tools. Q.H., J.J. and J.Z. analyzed and interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Julia Zeitlinger.

Ethics declarations

Competing interests

The authors have applied for a patent for ChIP-nexus.

Supplementary information

Supplementary figures and text

Supplementary Figure 1 and Supplementary Protocol 1 (PDF 2694 kb)

Supplementary Table 1 (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat Biotechnol 33, 395–401 (2015). https://doi.org/10.1038/nbt.3121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing