Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome molecular haplotyping of single cells

Abstract

Conventional experimental methods of studying the human genome are limited by the inability to independently study the combination of alleles, or haplotype, on each of the homologous copies of the chromosomes. We developed a microfluidic device capable of separating and amplifying homologous copies of each chromosome from a single human metaphase cell. Single-nucleotide polymorphism (SNP) array analysis of amplified DNA enabled us to achieve completely deterministic, whole-genome, personal haplotypes of four individuals, including a HapMap trio with European ancestry (CEU) and an unrelated European individual. The phases of alleles were determined at 99.8% accuracy for up to 96% of all assayed SNPs. We demonstrate several practical applications, including direct observation of recombination events in a family trio, deterministic phasing of deletions in individuals and direct measurement of the human leukocyte antigen haplotypes of an individual. Our approach has potential applications in personal genomics, single-cell genomics and statistical genetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic device designed for the amplification of metaphase chromosomes from a single cell.
Figure 2: Whole-genome haplotyping.
Figure 3: Comparison of statistically determined phases with experimentally determined phases.
Figure 4: Direct observation of recombination events and deterministic phasing of heterozygous deletions in the family trio.
Figure 5: HLA haplotypes of P0 determined using DDP.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Wheeler, D.A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahn, S.M. et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 19, 1622–1629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, J.I. et al. A highly annotated whole-genome sequence of a Korean individual. Nature 460, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pushkarev, D., Neff, N.F. & Quake, S.R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–850 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuster, S.C. et al. Complete Khoisan and Bantu genomes from southern Africa. Nature 463, 943–947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petersdorf, E.W., Malkki, M., Gooley, T.A., Martin, P.J. & Guo, Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 4, e8 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Bakker, P.I. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart, C.A. et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14, 1176–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groenendijk, M., Cantor, R.M., de Bruin, T.W. & Dallinga-Thie, G.M. The apoAI-CIII-AIV gene cluster. Atherosclerosis 157, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nagel, R.L. et al. The Senegal DNA haplotype is associated with the amelioration of anemia in African-American sickle cell anemia patients. Blood 77, 1371–1375 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, T. et al. Haplotypes in matrix metalloproteinase gene cluster on chromosome 11q22 contribute to the risk of lung cancer development and progression. Clin. Cancer Res. 12, 7009–7017 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Drysdale, C.M. et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad. Sci. USA 97, 10483–10488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  16. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang, K. et al. Long-range polony haplotyping of individual human chromosome molecules. Nat. Genet. 38, 382–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mitra, R.D. et al. Digital genotyping and haplotyping with polymerase colonies. Proc. Natl. Acad. Sci. USA 100, 5926–5931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding, C. & Cantor, C.R. Direct molecular haplotyping of long-range genomic DNA with M1-PCR. Proc. Natl. Acad. Sci. USA 100, 7449–7453 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michalatos-Beloin, S., Tishkoff, S.A., Bentley, K.L., Kidd, K.K. & Ruano, G. Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR. Nucleic Acids Res. 24, 4841–4843 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruano, G., Kidd, K.K. & Stephens, J.C. Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules. Proc. Natl. Acad. Sci. USA 87, 6296–6300 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woolley, A.T., Guillemette, C., Li Cheung, C., Housman, D.E. & Lieber, C.M. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18, 760–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Burgtorf, C. et al. Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res. 13, 2717–2724 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, M. et al. Direct determination of haplotypes from single DNA molecules. Nat. Methods 6, 199–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, L. et al. Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods 7, 299–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Douglas, J.A., Boehnke, M., Gillanders, E., Trent, J.M. & Gruber, S.B. Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat. Genet. 28, 361–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Marchini, J. et al. A comparison of phasing algorithms for trios and unrelated individuals. Am. J. Hum. Genet. 78, 437–450 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashley, E.A. et al. Clinical assessment incorporating a personal genome. Lancet 375, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bredel, M. et al. Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA. J. Mol. Diagn. 7, 171–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3, e155 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  32. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stephens, M., Smith, N.J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stephens, M. & Donnelly, P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kukita, Y. et al. Genome-wide definitive haplotypes determined using a collection of complete hydatidiform moles. Genome Res. 15, 1511–1518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andres, A.M. et al. Understanding the accuracy of statistical haplotype inference with sequence data of known phase. Genet. Epidemiol. 31, 659–671 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Conrad, D.F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Su, S.Y. et al. Inferring combined CNV/SNP haplotypes from genotype data. Bioinformatics 26, 1437–1445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Shiina, T., Hosomichi, K., Inoko, H. & Kulski, J.K. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54, 15–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Guo, Z., Hood, L., Malkki, M. & Petersdorf, E.W. Long-range multilocus haplotype phasing of the MHC. Proc. Natl. Acad. Sci. USA 103, 6964–6969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maiers, M., Gragert, L. & Klitz, W. High-resolution HLA alleles and haplotypes in the United States population. Hum. Immunol. 68, 779–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Price, P. et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol. Rev. 167, 257–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. White, R.A. III, Blainey, P.C., Fan, H.C. & Quake, S.R. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics 10, 116 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Melin and the Stanford Microfluidic Foundry for fabrication of microfluidic devices. We thank N. Neff and G. Mantalas for performing sequencing experiments. We thank D. Pushkarev for providing data and primers from the genome sequencing project of P0. We thank M. Anderson and D. Tyan at Stanford Histocompatibility Laboratory for providing HLA typing results. We thank Y. Marcy, P. Blainey, J. Jiang and A. Wu for helpful discussions. The project was supported by the US National Institutes of Health (NIH) Pioneer Award and an NIH U54 award. H.C.F. was supported by a scholarship from the Siebel Foundation. J.W. was supported by a scholarship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

H.C.F. and S.R.Q. conceived the experiments. H.C.F. designed the microfluidic device. A.P. developed protocols for device fabrication. H.C.F. and J.W. performed the experiments. H.C.F., J.W. and S.R.Q. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Stephen R Quake.

Ethics declarations

Competing interests

S.R.Q. is a founder, consultant and shareholder of Fluidigm Corporation and Helicos Biosciences Corporation, and a consultant and shareholder of Artemis Health. H.C.F. was previously employed at Fluidigm Corporation. All other authors declare no conflict of interest.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6 and Supplementary Figs. 1–4 (PDF 979 kb)

Supplementary Data Set 1

Haplotypes 1 GM12891 haplotypes.txt (TXT 21809 kb)

Supplementary Data Set 2

Haplotypes 2 GM12892 haplotypes.txt (TXT 20361 kb)

Supplementary Data Set 3

Haplotypes 3 GM12878 haplotypes.txt (TXT 21341 kb)

Supplementary Data Set 4

P0 Omni1S (TXT 31433 kb)

Supplementary Data Set 5

P0 Omni1Quad (TXT 16458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Wang, J., Potanina, A. et al. Whole-genome molecular haplotyping of single cells. Nat Biotechnol 29, 51–57 (2011). https://doi.org/10.1038/nbt.1739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing