Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations

Abstract

It is well established that autism spectrum disorders (ASD) have a strong genetic component; however, for at least 70% of cases, the underlying genetic cause is unknown1. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes—so-called sporadic or simplex families2,3—we sequenced all coding regions of the genome (the exome) for parent–child trios exhibiting sporadic ASD, including 189 new trios and 20 that were previously reported4. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19)4, for a total of 677 individual exomes from 209 families. Here we show that de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD5. Moreover, 39% (49 of 126) of the most severe or disruptive de novo mutations map to a highly interconnected β-catenin/chromatin remodelling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes: CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3 and SCN1A. Combined with copy number variant (CNV) data, these results indicate extreme locus heterogeneity but also provide a target for future discovery, diagnostics and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: De novo mutation events in autism spectrum disorder.
Figure 2: Mutations identified in protein–protein interaction (PPI) networks.

Similar content being viewed by others

Accession codes

Data deposits

Access to the raw sequence reads can be found at the NCBI database of Genotypes and Phenotypes (dbGaP) and National Database for Autism Research under accession numbers phs000482.v1.p1 and NDARCOL0001878, respectively.

References

  1. Schaaf, C. P. & Zoghbi, H. Y. Solving the autism puzzle a few pieces at a time. Neuron 70, 806–808 (2011)

    Article  CAS  Google Scholar 

  2. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011)

    Article  CAS  Google Scholar 

  3. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011)

    Article  CAS  Google Scholar 

  4. O’Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genet. 43, 585–589 (2011)

    Article  Google Scholar 

  5. Hultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P. & Reichenberg, A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol. Psychiatry 16, 1203–1212 (2010)

    Article  Google Scholar 

  6. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010)

    Article  CAS  Google Scholar 

  7. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010)

    Article  CAS  ADS  Google Scholar 

  8. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genet. 43, 864–868 (2011)

    Article  CAS  Google Scholar 

  9. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Naturehttp://dx.doi.org/10.1038/nature10945 (this issue)

  10. Hehir-Kwa, J. Y. et al. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J. Med. Genet. 48, 776–778 (2011)

    Article  CAS  Google Scholar 

  11. O’Roak, B. J. & State, M. W. Autism genetics: strategies, challenges, and opportunities. Autism Res. 1, 4–17 (2008)

    Article  Google Scholar 

  12. Nishimura-Akiyoshi, S., Niimi, K., Nakashiba, T. & Itohara, S. Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc. Natl Acad. Sci. USA 104, 14801–14806 (2007)

    Article  ADS  Google Scholar 

  13. Borg, I. et al. Disruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndrome. Eur. J. Hum. Genet. 13, 921–927 (2005)

    Article  CAS  Google Scholar 

  14. Nishiyama, M. et al. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nature Cell Biol. 11, 172–182 (2009)

    Article  CAS  Google Scholar 

  15. Thompson, B. A., Tremblay, V., Lin, G. & Bochar, D. A. CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol. Cell. Biol. 28, 3894–3904 (2008)

    Article  CAS  Google Scholar 

  16. Batsukh, T. et al. CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. Hum. Mol. Genet. 19, 2858–2866 (2010)

    Article  CAS  Google Scholar 

  17. Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77 (2011)

    Article  CAS  Google Scholar 

  18. Moller, R. S. et al. Truncation of the Down syndrome candidate gene DYRK1A in two unrelated patients with microcephaly. Am. J. Hum. Genet. 82, 1165–1170 (2008)

    Article  Google Scholar 

  19. Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nature Genet. 43, 838–846 (2011)

    Article  CAS  Google Scholar 

  20. Buysse, K. et al. Delineation of a critical region on chromosome 18 for the del(18)(q12.2q21.1) syndrome. Am. J. Med. Genet. A. 146A, 1330–1334 (2008)

    Article  Google Scholar 

  21. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nature Genet. 42, 483–485 (2010)

    Article  CAS  Google Scholar 

  22. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010)

    Article  CAS  Google Scholar 

  23. Erten, S., Bebek, G., Ewing, R. & Koyutürk, M. DADA: Degree-aware algorithms for network-based disease gene prioritization. BioData Mining 4, 19 (2011)

    Article  Google Scholar 

  24. De Ferrari, G. V. & Moon, R. T. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25, 7545–7553 (2006)

    Article  CAS  Google Scholar 

  25. Bedogni, F. et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl Acad. Sci. USA 107, 13129–13134 (2010)

    Article  CAS  ADS  Google Scholar 

  26. Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nature Methods 6, 315–316 (2009)

    Article  CAS  Google Scholar 

  27. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011)

    Article  CAS  Google Scholar 

  28. Sakai, Y. et al. Protein interactome reveals converging molecular pathways among autism disorders. Sci. Transl. Med. 3, 86ra49 (2011)

    Article  ADS  Google Scholar 

  29. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011)

    Article  CAS  Google Scholar 

  30. Ille, F. & Sommer, L. Wnt signaling: multiple functions in neural development. Cell. Mol. Life Sci. 62, 1100–1108 (2005)

    Article  CAS  Google Scholar 

  31. Tedeschi, A. & Di Giovanni, S. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 10, 576–583 (2009)

    Article  CAS  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    Article  CAS  Google Scholar 

  33. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet. 43, (2011)

  34. Hach, F. et al. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods 7, 576–577 (2010)

    Article  CAS  Google Scholar 

  35. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  CAS  Google Scholar 

  36. Moldin, S. O. NIMH Human Genetics Initiative: 2003 update. Am. J. Psychiatry 160, 621–622 (2003)

    Article  Google Scholar 

  37. Kessler, R. C. & Ustun, T. B. The World Mental Health (WMH) survey initiative version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int. J. Methods Psychiatr. Res. 13, 93–121 (2004)

    Article  Google Scholar 

  38. Biesecker, L. G. et al. The ClinSeq Project: piloting large-scale genome sequencing for research in genomic medicine. Genome Res. 19, 1665–1674 (2009)

    Article  CAS  Google Scholar 

  39. Talati, A., Fyer, A. J. & Weissman, M. M. A comparison between screened NIMH and clinically interviewed control samples on neuroticism and extraversion. Mol. Psychiatry 13, 122–130 (2008)

    Article  CAS  Google Scholar 

  40. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008)

    Article  CAS  Google Scholar 

  41. Itsara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009)

    Article  CAS  Google Scholar 

  42. Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010)

    Article  CAS  ADS  Google Scholar 

  43. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)

    Article  CAS  Google Scholar 

  44. Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008)

    Article  CAS  Google Scholar 

  45. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nature Methods 7, 111–118 (2010)

    Article  CAS  Google Scholar 

  46. Bunge, J. & Fitzpatrick, M. Estimating the number of species - a Review. J. Am. Stat. Assoc. 88, 364–373 (1993)

    Google Scholar 

  47. Chao, A. & Lee, S. M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87, 210–217 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank and recognize the following ongoing studies that produced and provided exome variant calls for comparison: NHLBI Lung Cohort Sequencing Project (HL 1029230), NHLBI WHI Sequencing Project (HL 102924), NIEHS SNPs (HHSN273200800010C), NHLBI/NHGRI SeattleSeq (HL 094976), and the Northwest Genomics Center (HL 102926). We are grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, E. Hanson, D. Grice, A. Klin, R. Kochel, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren and E. Wijsman). We also acknowledge M. State and the Simons Simplex Collection Genetics Consortium for providing Illumina genotyping data, T. Lehner and the Autism Sequencing Consortium for providing an opportunity for pre-publication data exchange among the participating groups. We appreciate obtaining access to phenotypic data on SFARI Base. This work was supported by the Simons Foundation Autism Research Initiative (SFARI 137578 and 191889; E.E.E., J.S. and R.B.) and NIH HD065285 (E.E.E. and J.S.). E.B. is an Alfred P. Sloan Research Fellow. E.E.E. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

E.E.E., J.S. and B.J.O. designed the study and drafted the manuscript. E.E.E. and J.S. supervised the study. R.B., B.R. and B.J.O. analysed the clinical information. R.B., L.V., S.G., E.K., N.K. and B.P.C. contributed to the manuscript. S.G., N.K., B.P.C., A.K., C.B., M.M. and L.V. generated and analysed CNV data. B.J.O. and L.V. performed MIP resequencing and mutation validations. I.B.S., E.H.T., B.J.O. and J.S. developed MIP protocol and analysis. B.V. and J.M.A. generated loci-specific mutation rate estimates. R.L. and E.B. performed PPI network analysis and simulations. E.K. performed DADA analysis. C.L. performed Illumina sequencing. J.D.S., I.B.S., E.H.T. and C.L. analysed sequence data. B.P.C. performed IPA analysis. B.J.O., E.K. and N.K. developed the de novo analysis pipelines and analysed sequence data. D.A.N., M.J.R., J.D.S. and E.H.T. supervised exome sequencing and primary analysis.

Corresponding authors

Correspondence to Jay Shendure or Evan E. Eichler.

Ethics declarations

Competing interests

E.E.E. is on the scientific advisory boards for Pacific Biosciences, Inc and SynapDx Corp. J.S. is a member of the scientific advisory board or serves as a consultant for Aria Diagnostics, Stratos Genomics, Good Start Genetics, and Adaptive TCR. B.J.O. is an inventor on patent PCT/US2009/30620: mutations in contactin associated protein 2 are associated with increased risk for idiopathic autism.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion; Supplementary Figures 1–13; Supplementary Tables 2, 4, 6-13; and Supplementary References. (PDF 2170 kb)

Supplementary Tables

This file contains Supplementary Tables 1, 3 and 5 which give detailed information on exome capture, sequence coverage, paternal age, de novo mutation sites, and functional annotations. (XLS 203 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Roak, B., Vives, L., Girirajan, S. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012). https://doi.org/10.1038/nature10989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10989

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research