Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global quantification of mammalian gene expression control

A Corrigendum to this article was published on 13 February 2013

This article has been updated

Abstract

Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel quantification of mRNA and protein turnover and levels.
Figure 2: mRNA and protein levels and half-lives.
Figure 3: Quantitative model of gene expression in growing cells.
Figure 4: Impact of different rates and rate constants on protein abundance.
Figure 5: Functional characteristics of genes with different mRNA and protein half-lives.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Data deposits

Sequences have been deposited in the Sequence Read Archive under accession code SRA030871.

Change history

  • 13 February 2013

    Nature 473, 337–342 (2011); doi:10.1038/nature10098 Mark Biggin of the Lawrence Berkeley National Laboratory contacted us, noting that our mass-spectrometry-based protein copy number estimates are lower than several literature-based values. We therefore re-analysed the scripts used for data processing, and found a scaling error that occurred during the conversion of normalized protein intensity values into absolute copy number estimates.

References

  1. Ben-Tabou de-Leon, S. & Davidson, E. H. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev. Biol. 325, 317–328 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology view. Nature Rev. Genet. 9, 38–48 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M. & Vogel, C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5, 1512–1526 (2009)

    PubMed  Google Scholar 

  4. Maier, T., Guell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103, 13004–13009 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gouw, J. W., Krijgsveld, J. & Heck, A. J. Quantitative proteomics by metabolic labeling of model organisms. Mol. Cell. Proteomics 9, 11–24 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Beynon, R. J. & Pratt, J. M. Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 4, 857–872 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Friedel, C. C., Dolken, L., Ruzsics, Z., Koszinowski, U. H. & Zimmer, R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37, e115 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol. 7, 952–958 (2006)

    Article  CAS  Google Scholar 

  12. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J. & Beynon, R. J. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Milner, E., Barnea, E., Beer, I. & Admon, A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol. Cell. Proteomics 5, 357–365 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Lam, Y. W., Lamond, A. I., Mann, M. & Andersen, J. S. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwanhäusser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnol. 26, 1367–1372 (2008)

    Article  CAS  Google Scholar 

  18. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. Natl Acad. Sci. USA 107, 14508–14513 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, C. C., MacCoss, M. J., Howell, K. E., Matthews, D. E. & Yates, J. R., III Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol. 25, 117–124 (2007)

    Article  CAS  Google Scholar 

  22. Malmström, J. et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans . Nature 460, 762–765 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnol. 26, 317–325 (2008)

    Article  CAS  Google Scholar 

  25. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nature Struct. Mol. Biol. 14, 796–806 (2007)

    Article  CAS  Google Scholar 

  26. Arava, Y., Boas, F. E., Brown, P. O. & Herschlag, D. Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res. 33, 2421–2432 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, G., Nie, L. & Zhang, W. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data. Curr. Microbiol. 57, 18–22 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Kirkpatrick, D. S., Denison, C. & Gygi, S. P. Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nature Cell Biol. 7, 750–757 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunol. 10, 281–288 (2009)

    Article  CAS  Google Scholar 

  32. Legewie, S., Herzel, H., Westerhoff, H. V. & Bluthgen, N. Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol. Syst. Biol. 4, 190 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wagner, A. Energy constraints on the evolution of gene expression. Mol. Biol. Evol. 22, 1365–1374 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Pedraza, J. M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Mittal, N., Roy, N., Babu, M. M. & Janga, S. C. Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks. Proc. Natl Acad. Sci. USA 106, 20300–20305 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D. & Brown, P. O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nature Rev. Mol. Cell Biol. 5, 827–835 (2004)

    Article  CAS  Google Scholar 

  41. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–362 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotechnol. 10.1038/nbt.1861 (24 April 2011).

Download references

Acknowledgements

We thank N. Rajewsky and L. Dölken for fruitful discussions and C. Sommer for technical assistance. M.S. and W.C. are supported by the Helmholtz Association, the German Ministry of Education and Research (BMBF) and the Senate of Berlin by funds aimed at establishing the Berlin Institute of Medical Systems Biology (BIMSB) (grant number 315362A). J.W. is supported by the ForSys-programme of the German Ministry of Education and Research (grant number 315289); D.B. by the Helmholtz Alliance on Systems Biology/MSBN; and N.L. by the China Scholarship Council CSC.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived, designed and supervised the experiments. B.S. performed wet-lab experiments, mass spectrometry and proteomic data analysis. D.B. and J.W. developed and employed the mathematical model. N.L. performed RNA-seq experiments. W.C. designed and supervised RNA-seq experiments. B.S., D.B., J.S., W.C. and M.S. analysed genome-wide data. G.D. helped in cycloheximide chase experiments and data analysis. B.S., D.B., J.S., J.W., W.C. and M.S. interpreted the data. M.S. wrote the manuscript.

Corresponding authors

Correspondence to Jana Wolf, Wei Chen or Matthias Selbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12 with legends. This file was replaced on 13 February 2013 - see Selbach 11848 corrigendum for details. (PDF 2430 kb)

Supplementary Methods

This file contains Supplementary Methods and Data, Supplementary Figures 1-4 with legends and additional references. (PDF 739 kb)

Supplementary Table 1

This table displays an overview of data reproducibility. This file was replaced on 13 February 2013 - see Selbach 11848 corrigendum for details. (XLS 31 kb)

Supplementary Table 2

This table displays categories enriched in bins of genes with the specified combinations of protein and mRNA half-lives. (XLS 72 kb)

Supplementary Table 3

This table displays protein and mRNA copy numbers, half-lives, transcription rates and translation rate constants in mouse fibroblasts (NIH 3T3). This file was replaced on 13 February 2013 - see Selbach 11848 corrigendum for details. (XLS 3314 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwanhäusser, B., Busse, D., Li, N. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011). https://doi.org/10.1038/nature10098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10098

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing