Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane scission by the ESCRT-III complex

Abstract

The endosomal sorting complex required for transport (ESCRT) system is essential for multivesicular body biogenesis, in which cargo sorting is coupled to the invagination and scission of intralumenal vesicles. The ESCRTs are also needed for budding of enveloped viruses including human immunodeficiency virus 1, and for membrane abscission in cytokinesis. In Saccharomyces cerevisiae, ESCRT-III consists of Vps20, Snf7, Vps24 and Vps2 (also known as Did4), which assemble in that order and require the ATPase Vps4 for their disassembly. In this study, the ESCRT-III-dependent budding and scission of intralumenal vesicles into giant unilamellar vesicles was reconstituted and visualized by fluorescence microscopy. Here we show that three subunits of ESCRT-III, Vps20, Snf7 and Vps24, are sufficient to detach intralumenal vesicles. Vps2, the ESCRT-III subunit responsible for recruiting Vps4, and the ATPase activity of Vps4 were required for ESCRT-III recycling and supported additional rounds of budding. The minimum set of ESCRT-III and Vps4 proteins capable of multiple cycles of vesicle detachment corresponds to the ancient set of ESCRT proteins conserved from archaea to animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ESCRT-III and Vps4 bind to GUV membranes.
Figure 2: Uptake of the bulk phase and vesicle scission by ESCRT-III.
Figure 3: Three-dimensional reconstruction of an ESCRT-III-treated GUV.
Figure 4: Contributions of individual ESCRT-III subunits to ILV formation.
Figure 5: Vps4 and ATP induce a second cycle of ILV formation.
Figure 6: A simple hypothesis for the mechanism of the ESCRT-III-Vps4 membrane scission cycle.

Similar content being viewed by others

References

  1. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004)

    Article  CAS  Google Scholar 

  2. Russell, M. R. G., Nickerson, D. P. & Odorizzi, G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr. Opin. Cell Biol. 18, 422–428 (2006)

    Article  CAS  Google Scholar 

  3. Slagsvold, T., Pattni, K., Malerod, L. & Stenmark, H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 16, 317–326 (2006)

    Article  CAS  Google Scholar 

  4. Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561–573 (2007)

    Article  CAS  Google Scholar 

  5. Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007)

    Article  CAS  Google Scholar 

  6. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007)

    Article  CAS  Google Scholar 

  7. Hurley, J. H. ESCRT Complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008)

    Article  CAS  Google Scholar 

  8. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004)

    Article  CAS  Google Scholar 

  9. Bieniasz, P. D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006)

    Article  CAS  Google Scholar 

  10. Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nature Rev. Microbiol. 5, 912–916 (2007)

    Article  CAS  Google Scholar 

  11. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007)

    Article  CAS  Google Scholar 

  13. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. G. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000)

    Article  CAS  Google Scholar 

  16. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002)

    Article  CAS  Google Scholar 

  17. Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006)

    Article  CAS  Google Scholar 

  18. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007)

    Article  CAS  Google Scholar 

  20. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008)

    Article  CAS  Google Scholar 

  21. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998)

    Article  CAS  Google Scholar 

  22. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Stuchell-Brereton, M. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008)

    Article  CAS  Google Scholar 

  25. Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008)

    Article  CAS  Google Scholar 

  26. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Sens, P., Johannes, L. & Bassereau, P. Biophysical approaches to protein-induced membrane deformations in trafficking. Curr. Opin. Cell Biol. 20, 476–482 (2008)

    Article  CAS  Google Scholar 

  30. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007)

    Article  ADS  Google Scholar 

  31. Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004)

    Article  CAS  Google Scholar 

  32. Evans, W. H. & Hardison, W. G. Phospholipid, cholesterol, polypeptide and glycoprotein composition of hepatic endosome subfractions. Biochem. J. 232, 33–36 (1985)

    Article  CAS  Google Scholar 

  33. Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002)

    Article  CAS  Google Scholar 

  34. Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Article  CAS  Google Scholar 

  35. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008)

    Article  CAS  Google Scholar 

  36. Nickerson, D. P., West, M. & Odorizzi, G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J. Cell Biol. 175, 715–720 (2006)

    Article  CAS  Google Scholar 

  37. Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485–498 (2007)

    Article  CAS  Google Scholar 

  38. Wickner, W. & Schekman, R. Membrane fusion. Nature Struct. Mol. Biol. 15, 658–664 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Schram and the NICHD imaging core facility for use of the LSM5 LiveDuo microscope, D. Yang and G. Patterson for providing purified Vps4 and GFP, respectively, B. Beach for assistance with subcloning, E. Tyler for generating Fig. 6 and Supplementary Movie 3, Y. Im for assistance with Supplementary Fig. 1, C. Biertümpfel and W. Yang for use of their light-scattering instrument, and members of the Hurley and Lippincott-Schwartz laboratories for discussions. This research was supported by the Intramural Program of the National Institutes of Health, NICHD (J.L.-S.), NIDDK (J.H.H.) and IATAP (J.H.H. and J.L.-S.). T.W. is an EMBO long-term fellow.

Author Contributions T.W. and C.W. prepared GUVs and carried out confocal microscopy; T.W. purified and labelled proteins; C.W. carried out the three-dimensional reconstruction; T.W., C.W., J.L.-S. and J.H.H. analysed data; J.H.H. designed the study and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S3 with Legends and Supplementary Movies Legends S1-S3 (PDF 1670 kb)

Supplementary Movie S1

This file shows 3D reconstruction of a GUV (see file s1 for full legend). (MOV 14472 kb)

Supplementary Movie S2

The file shows ILV dynamics (see file s1 for full legend). (MOV 1444 kb)

Supplementary Movie S3

The file shows animation of model for ILV scission (see file s1 for full legend). (MOV 8429 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollert, T., Wunder, C., Lippincott-Schwartz, J. et al. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009). https://doi.org/10.1038/nature07836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing