Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From endoplasmic-reticulum stress to the inflammatory response

Abstract

The endoplasmic reticulum is responsible for much of a cell's protein synthesis and folding, but it also has an important role in sensing cellular stress. Recently, it has been shown that the endoplasmic reticulum mediates a specific set of intracellular signalling pathways in response to the accumulation of unfolded or misfolded proteins, and these pathways are collectively known as the unfolded-protein response. New observations suggest that the unfolded-protein response can initiate inflammation, and the coupling of these responses in specialized cells and tissues is now thought to be fundamental in the pathogenesis of inflammatory diseases. The knowledge gained from this emerging field will aid in the development of therapies for modulating cellular stress and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian UPR pathways.
Figure 2: Oxidative protein folding.
Figure 3: Proposed models for UPR-mediated JNK and NF-κB activation.
Figure 4: The ER-stress-induced acute-phase response.
Figure 5: The role of calcium and ROS in the UPR and inflammation.
Figure 6: The 'ER-stress–inflammation' loop in specialized cells.

Similar content being viewed by others

References

  1. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  PubMed  Google Scholar 

  2. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    ADS  CAS  Google Scholar 

  3. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol. 6, 508–519 (2006).

    CAS  Google Scholar 

  4. Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 (1999).

    CAS  PubMed  Google Scholar 

  5. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  Google Scholar 

  6. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  7. Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756 (1993).

    CAS  PubMed  Google Scholar 

  8. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    CAS  PubMed  Google Scholar 

  9. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18, 7499–7509 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    ADS  CAS  PubMed  Google Scholar 

  11. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  13. Kohno, K. How transmembrane proteins sense endoplasmic reticulum stress. Antioxid. Redox Signal. 9, 2295–2303 (2007).

    CAS  PubMed  Google Scholar 

  14. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    CAS  PubMed  Google Scholar 

  15. Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaman, I. et al. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113, 519–531 (2003).

    CAS  PubMed  Google Scholar 

  17. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  18. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    CAS  PubMed  Google Scholar 

  19. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  20. Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007).

    CAS  PubMed  Google Scholar 

  21. Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K. & Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. Embo J. 24, 1243–1255 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495–45502 (2004).

    CAS  PubMed  Google Scholar 

  23. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007).

    CAS  PubMed  Google Scholar 

  24. Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. Genetic deletion of C/EBP homologous protein CHOP reduces oxidative stress, improves β cell function, and prevents diabetes. J. Clin. Invest. (in the press). This report describes how the ER-stress-induced pro-apoptotic factor CHOP is involved in oxidative stress and β-cell death.

  25. Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508 (2000).

    CAS  PubMed  Google Scholar 

  26. Tu, B. P. & Weissman, J. S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tu, B. P. & Weissman, J. S. The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10, 983–994 (2002).

    CAS  PubMed  Google Scholar 

  28. Cuozzo, J. W. & Kaiser, C. A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol. 1, 130–135 (1999). References 27 and 28 provide insights into how protein folding in the ER leads to the production of ROS.

    CAS  PubMed  Google Scholar 

  29. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mathers, J. et al. Antioxidant and cytoprotective responses to redox stress. Biochem. Soc. Symp. 71, 157–176 (2004).

    CAS  Google Scholar 

  31. Zhang, D. D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769–789 (2006).

    CAS  PubMed  Google Scholar 

  32. Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117 (2004).

    CAS  PubMed  Google Scholar 

  33. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pahl, H. L. & Baeuerle, P. A. Expression of influenza virus hemagglutinin activates transcription factor NF-κB. J. Virol. 69, 1480–1484 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer, M. et al. Hepatitis B virus transactivator MHBst: activation of NF-κB, selective inhibition by antioxidants and integral membrane localization. Embo J. 11, 2991–3001 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pahl, H. L. & Baeuerle, P. A. Activation of NF-κB by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett. 392, 129–136 (1996).

    CAS  PubMed  Google Scholar 

  37. Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285–299 (2008). This paper shows that protein misfolding in the ER causes calcium to leak into the cytosol, resulting in the outer membrane of mitochondria becoming more permeable.

    CAS  PubMed  Google Scholar 

  38. Deng, J. et al. Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–10168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, S. et al. Ultraviolet light activates NFκB through translational inhibition of IκBα synthesis. J. Biol. Chem. 279, 34898–34902 (2004). References 38 and 39 show that NF-κB is activated by the PERK pathway of the UPR.

    CAS  PubMed  Google Scholar 

  40. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000). This paper shows how ER stress activates JNK by way of IRE1α.

    ADS  CAS  PubMed  Google Scholar 

  41. Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    CAS  PubMed  Google Scholar 

  43. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    CAS  PubMed  Google Scholar 

  44. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006). This study identifies CREBH, an ER-stress-inducible transcription factor that can mediate the acute-phase response.

    CAS  PubMed  Google Scholar 

  45. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    CAS  Google Scholar 

  46. Gorlach, A., Klappa, P. & Kietzmann, T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391–1418 (2006).

    PubMed  Google Scholar 

  47. Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277–2293 (2007).

    CAS  PubMed  Google Scholar 

  48. Stamler, J. S., Singel, D. J. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898–1902 (1992).

    ADS  CAS  PubMed  Google Scholar 

  49. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    ADS  CAS  PubMed  Google Scholar 

  50. Xu, K. Y., Huso, D. L., Dawson, T. M., Bredt, D. S. & Becker, L. C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA 96, 657–662 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, W., Liu, L., Charles, I. G. & Moncada, S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nature Cell Biol. 6, 1129–1134 (2004).

    CAS  PubMed  Google Scholar 

  52. Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem. 280, 33917–33925 (2005).

    CAS  PubMed  Google Scholar 

  53. Lin, W., Harding, H. P., Ron, D. & Popko, B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J. Cell Biol. 169, 603–612 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol. 5, 781–792 (2003).

    CAS  PubMed  Google Scholar 

  55. Maedler, K. et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kharroubi, I. et al. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145, 5087–5096 (2004).

    CAS  PubMed  Google Scholar 

  57. Zhou, J. et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 110, 207–213 (2004).

    CAS  PubMed  Google Scholar 

  58. Yamamuro, A., Yoshioka, Y., Ogita, K. & Maeda, S. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem. Res. 31, 657–664 (2006).

    CAS  PubMed  Google Scholar 

  59. Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    ADS  PubMed  Google Scholar 

  61. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006). This paper shows that decreasing ER stress improves insulin sensitivity in mice with type 2 diabetes.

    ADS  PubMed  PubMed Central  Google Scholar 

  62. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    ADS  CAS  PubMed  Google Scholar 

  63. Aguirre, V. et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 277, 1531–1537 (2002).

    CAS  PubMed  Google Scholar 

  64. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, K. J. & Tabas, I. Atherosclerosis and inflammation. Science 297, 521–522 (2002).

    CAS  PubMed  Google Scholar 

  66. Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and MAP kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772 (2005). This paper describes how ER-stress signalling and inflammatory-response signalling are integrated in cholesterol-loaded macrophages.

    CAS  PubMed  Google Scholar 

  67. Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 2490–2496 (2006).

    CAS  PubMed  Google Scholar 

  68. Tansey, M. G., McCoy, M. K. & Frank-Cannon, T. C. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 208, 1–25 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).

    CAS  PubMed  Google Scholar 

  70. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    ADS  CAS  PubMed  Google Scholar 

  71. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, H. Q. & Takahashi, R. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid. Redox Signal. 9, 553–561 (2007).

    CAS  PubMed  Google Scholar 

  73. Silva, R. M. et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95, 974–986 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc. Natl Acad. Sci. USA 105, 757–762 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paschen, W., Aufenberg, C., Hotop, S. & Mengesdorf, T. Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J. Cereb. Blood Flow Metab. 23, 449–461 (2003).

    CAS  PubMed  Google Scholar 

  76. DeLegge, M. H. & Smoke, A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 23, 35–41 (2008).

    PubMed  Google Scholar 

  77. Frohman, E. M., Racke, M. K. & Raine, C. S. Multiple sclerosis — the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    CAS  PubMed  Google Scholar 

  78. Lin, W. et al. Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 129, 1306–1318 (2006).

    PubMed  Google Scholar 

  79. Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest. 117, 448–456 (2007). This paper shows that IFN-γ can have a detrimental role or a protective role, mediated by the UPR, depending on the stage of multiple sclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lees, J. R. & Cross, A. H. A little stress is good: IFN-γ, demyelination, and multiple sclerosis. J. Clin. Invest. 117, 297–299 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tabata, Y. et al. Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am. J. Physiol. Cell. Physiol. 293, C411–C418 (2007).

    CAS  PubMed  Google Scholar 

  82. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Mitchell for her efforts in preparing the manuscript. We apologize to those whose work could not be cited because of space limitations. K.Z. is supported by a grant from the American Heart Association (0635423Z). R.J.K. is supported by grants from the National Institutes of Health (DK042394, HL052173 and HL057346) and is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to R.J.K. (kaufmanr@umich.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Kaufman, R. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008). https://doi.org/10.1038/nature07203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing