Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging in the era of molecular oncology

Abstract

New technologies for imaging molecules, particularly optical technologies, are increasingly being used to understand the complexity, diversity and in vivo behaviour of cancers. 'Omic' approaches are providing comprehensive 'snapshots' of biological indicators, or biomarkers, of cancer, but imaging can take this information a step further, showing the activity of these markers in vivo and how their location changes over time. Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and, ultimately, should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide 'on the spot' treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging technologies used in oncology.
Figure 2: High-affinity imaging agents with appropriate pharmacokinetics are essential for imaging at the molecular level.
Figure 3: Behaviour of tumour cells and cells in the tumour stroma in situ, as elucidated by in vivo imaging.
Figure 4: Clinical imaging.

Similar content being viewed by others

References

  1. Soon, L., Braet, F. & Condeelis, J. Moving in the right direction — nanoimaging in cancer cell motility and metastasis. Microsc. Res. Tech. 70, 252–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brindle, K. M. New approaches for imaging tumour responses to treatment. Nature Rev. Cancer 8, 94–107 (2008).

    Article  CAS  Google Scholar 

  4. Quon, A. & Gambhir, S. S. FDG-PET and beyond: molecular breast cancer imaging. J. Clin. Oncol. 23, 1664–1673 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Neves, A. A. & Brindle, K. M. Assessing responses to cancer therapy using molecular imaging. Biochim. Biophys. Acta 1766, 242–261 (2006).

    CAS  PubMed  Google Scholar 

  6. Policard, A. Étude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. C. R. Séances Soc. Biol. Fil. 91, 1423–1424 (1924).

    Google Scholar 

  7. Auler, H. & Banzer, G. Untersuchungen ueber die Rolle der Porphyrine bei geschwulstranken Menschen und Tieren. Z. Krebsforsch. 53, 65–68 (1942).

    Article  CAS  Google Scholar 

  8. Moore, G. E., Peyton, W. T. & French, L. A. The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J. Neurosurg. 5, 392–398 (1948).

    Article  CAS  PubMed  Google Scholar 

  9. Chance, B. Optical method. Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Tatsuta, M. et al. Diagnosis of gastric cancers with fluorescein-labeled monoclonal antibodies to carcinoembryonic antigen. Lasers Surg. Med. 9, 422–426 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Folli, S. et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl Acad. Sci. USA 89, 7973–7977 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pelegrin, A. et al. Antibody–fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 67, 2529–2537 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Wagner, R. Erläuterungstafeln zur Physiologie und Entwicklungsgeschichte (Voss, Leipzig, 1839).

    Google Scholar 

  15. Halin, C., Rodrigo Mora, J., Sumen, C. & von Andrian, U. H. In vivo imaging of lymphocyte trafficking. Annu. Rev. Cell Dev. Biol. 21, 581–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiesslich, R., Goetz, M., Vieth, M., Galle, P. R. & Neurath, M. F. Confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nature Clin. Pract. Oncol. 4, 480–490 (2007).

    Article  Google Scholar 

  18. Yelin, D. et al. Three-dimensional miniature endoscopy. Nature 443, 765 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).

    Article  CAS  Google Scholar 

  20. Grimm, J. et al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl Acad. Sci. USA 102, 14404–14409 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zacharakis, G. et al. Volumetric tomography of fluorescent proteins through small animals in vivo . Proc. Natl Acad. Sci. USA 102, 18252–18257 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo . Nature Med. 12, 1429–1433 (2006). This paper describes the development of a fibre-optic imaging technique that is useful for diagnostic imaging of epithelial disease.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol. 24, 848–851 (2006).

    Article  CAS  Google Scholar 

  24. Liu, Y. et al. Optical markers in duodenal mucosa predict the presence of pancreatic cancer. Clin. Cancer Res. 13, 4392–4399 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).

    CAS  PubMed  Google Scholar 

  27. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo . Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  30. Ray, P. et al. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc. Natl Acad. Sci. USA 99, 3105–3110 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perroy, J., Pontier, S., Charest, P. G., Aubry, M. & Bouvier, M. Real-time monitoring of ubiquitination in living cells by BRET. Nature Methods 1, 203–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  33. Paulmurugan, R., Massoud, T. F., Huang, J. & Gambhir, S. S. Molecular imaging of drug-modulated protein–protein interactions in living subjects. Cancer Res. 64, 2113–2119 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelly, K. et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. (in the press).

  35. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005). This study used libraries of nanoparticles to identify cell-specific targeting agents that can be used for in vivo labelling.

    Article  CAS  Google Scholar 

  36. Kelly, K. A., Waterman, P. & Weissleder, R. In vivo imaging of molecularly targeted phage. Neoplasia 8, 1011–1018 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pittet, M. J. et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc. Natl Acad. Sci. USA 104, 12457–12461 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bulte, J. W. Intracellular endosomal magnetic labeling of cells. Methods Mol. Med. 124, 419–439 (2006).

    PubMed  Google Scholar 

  39. Arbab, A. S., Liu, W. & Frank, J. A. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev. Med. Devices 3, 427–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Pittet, M. J., Swirski, F. K., Reynolds, F., Josephson, L. & Weissleder, R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols doi:10.1038/nprot.2006.11 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Swirski, F. K. et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2, e1075 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. Boon, T., Coulie, P. G., Van den Eynde, B. J. & van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Romero, P. et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. 188, 1641–1650 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, M. L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo . Proc. Natl Acad. Sci. USA 102, 419–424 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Med. 13, 828–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, L. et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749–2761 (2006). References 48 and 49 were the first in vivo studies of T-cell infiltration and motility in tumour stroma and T-cell formation of cognate-antigen-dependent contacts with tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo . Nature Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  51. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006). This study found that T reg cells reversibly suppress CTL-mediated antitumour immunity by allowing CTLs to acquire full effector potential but withholding their 'license to kill'.

    Article  CAS  PubMed  Google Scholar 

  52. Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 7, 429–440 (2007).

    Article  CAS  Google Scholar 

  54. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007). This paper reports that the intravasation of breast tumour cells in vivo occurs in association with perivascular TAMs.

    Article  CAS  PubMed  Google Scholar 

  55. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Granot, D. et al. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res. 67, 9180–9189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol. 17, 375–378 (1999).

    Article  CAS  Google Scholar 

  62. Ntziachristos, V., Tung, C. H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo . Nature Med. 8, 757–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. McDonald, D. M. & Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nature Med. 9, 713–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001). This study used intravital microscopy and tumour-window-chamber models to monitor gene expression, cell adhesion, delivery of therapeutics, angiogenesis and blood-vessel permeability in deep regions of tumours.

    Article  CAS  PubMed  Google Scholar 

  67. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med. 10, 145–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Montet, X., Ntziachristos, V., Grimm, J. & Weissleder, R. Tomographic fluorescence mapping of tumor targets. Cancer Res. 65, 6330–6336 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Contag, C. H., Jenkins, D., Contag, P. R. & Negrin, R. S. Use of reporter genes for optical measurements of neoplastic disease in vivo . Neoplasia 2, 41–52 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, K. C. et al. Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Clin. Cancer Res. 13, 1839–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Laxman, B. et al. Noninvasive real-time imaging of apoptosis. Proc. Natl Acad. Sci. USA 99, 16551–16555 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V–Cy5.5 conjugate. Proc. Natl Acad. Sci. USA 101, 12294–12299 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blankenberg, F. G., Vanderheyden, J. L., Strauss, H. W. & Tait, J. F. Radiolabeling of HYNIC–annexin V with technetium-99m for in vivo imaging of apoptosis. Nature Protocols doi:10.1038/nprot.2006.17 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Avril, N. et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J. Clin. Oncol. 23, 7445–7453 (2005).

    Article  PubMed  Google Scholar 

  76. Lordick, F. et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 8, 797–805 (2007).

    Article  PubMed  Google Scholar 

  77. Dekker, E. & Fockens, P. New imaging techniques at colonoscopy: tissue spectroscopy and narrow band imaging. Gastrointest. Endosc. Clin. N. Am. 15, 703–714 (2005).

    Article  PubMed  Google Scholar 

  78. Herth, F. J., Eberhardt, R. & Ernst, A. The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration 73, 399–409 (2006).

    Article  PubMed  Google Scholar 

  79. Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122, 406–414 (2002).

    Article  PubMed  Google Scholar 

  80. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004). This paper shows that cathepsins promote invasive growth and angiogenesis in pancreatic islet tumours.

    Article  CAS  PubMed  Google Scholar 

  81. McCarthy, J. R., Jaffer, F. A. & Weissleder, R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2, 983–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Koyama, Y. et al. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin. Cancer Res. 13, 2936–2945 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kirsch, D. G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Med. 13, 992–997 (2007). This study combined a new mouse model of soft-tissue sarcoma that mimics human sarcomas with a hand-held imaging device that identifies residual tumour tissue during intra-operative molecular imaging.

    Article  CAS  PubMed  Google Scholar 

  84. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  85. Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003).

    Article  CAS  Google Scholar 

  86. Rontgen, W. C. On a new kind of rays. Nature 53, 274–276 (1896).

    Google Scholar 

  87. Drexler, B., Davis, J. L. & Schofield, G. Diaphanography in the diagnosis of breast cancer. Radiology 157, 41–44 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Figueiredo, J. L., Alencar, H., Weissleder, R. & Mahmood, U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int. J. Cancer 118, 2672–2677 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ntziachristos, V., Yodh, A. G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl Acad. Sci. USA 97, 2767–2772 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Drahl, C., Cravatt, B. F. & Sorensen, E. J. Protein-reactive natural products. Angew. Chem. Int. Ed. Engl. 44, 5788–5809 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Roberti, M. J., Bertoncini, C. W., Klement, R., Jares-Erijman, E. A. & Jovin, T. M. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nature Methods 4, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Venkatraman, P. et al. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nature Chem. Biol. 3, 222–228 (2007).

    Article  CAS  Google Scholar 

  93. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  94. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Georgakoudi, I. et al. In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res. 64, 5044–5047 (2004). This paper reports the first in vivo flow-cytometry-based method for quantifying circulating tumour cells.

    Article  CAS  PubMed  Google Scholar 

  96. Boutrus, S. et al. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J. Biomed. Opt. 12, 020507, doi:10.1117/1.2722733 (2007).

  97. He, W., Wang, H., Hartmann, L. C., Cheng, J. X. & Low, P. S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl Acad. Sci. USA 104, 11760–11765 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagrath, S., Haber, D. A. & Toner, M. Isolation of rare circulating epithelial cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, H., Sun, E. Y., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nature Med. (in the press). This study developed a low-cost diagnostic MRI platform for rapid, quantitative, multichannel detection of biological targets in unprocessed samples.

  100. Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

R.W. holds shares in VisEn Medical.

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to R.W. (rweissleder@mgh.harvard.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissleder, R., Pittet, M. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). https://doi.org/10.1038/nature06917

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing