Abstract
New technologies for imaging molecules, particularly optical technologies, are increasingly being used to understand the complexity, diversity and in vivo behaviour of cancers. 'Omic' approaches are providing comprehensive 'snapshots' of biological indicators, or biomarkers, of cancer, but imaging can take this information a step further, showing the activity of these markers in vivo and how their location changes over time. Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and, ultimately, should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide 'on the spot' treatment.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Soon, L., Braet, F. & Condeelis, J. Moving in the right direction — nanoimaging in cancer cell motility and metastasis. Microsc. Res. Tech. 70, 252–257 (2007).
Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).
Brindle, K. M. New approaches for imaging tumour responses to treatment. Nature Rev. Cancer 8, 94–107 (2008).
Quon, A. & Gambhir, S. S. FDG-PET and beyond: molecular breast cancer imaging. J. Clin. Oncol. 23, 1664–1673 (2005).
Neves, A. A. & Brindle, K. M. Assessing responses to cancer therapy using molecular imaging. Biochim. Biophys. Acta 1766, 242–261 (2006).
Policard, A. Étude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. C. R. Séances Soc. Biol. Fil. 91, 1423–1424 (1924).
Auler, H. & Banzer, G. Untersuchungen ueber die Rolle der Porphyrine bei geschwulstranken Menschen und Tieren. Z. Krebsforsch. 53, 65–68 (1942).
Moore, G. E., Peyton, W. T. & French, L. A. The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J. Neurosurg. 5, 392–398 (1948).
Chance, B. Optical method. Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).
Tatsuta, M. et al. Diagnosis of gastric cancers with fluorescein-labeled monoclonal antibodies to carcinoembryonic antigen. Lasers Surg. Med. 9, 422–426 (1989).
Folli, S. et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl Acad. Sci. USA 89, 7973–7977 (1992).
Pelegrin, A. et al. Antibody–fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 67, 2529–2537 (1991).
Wagner, R. Erläuterungstafeln zur Physiologie und Entwicklungsgeschichte (Voss, Leipzig, 1839).
Halin, C., Rodrigo Mora, J., Sumen, C. & von Andrian, U. H. In vivo imaging of lymphocyte trafficking. Annu. Rev. Cell Dev. Biol. 21, 581–603 (2005).
Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941–950 (2005).
Kiesslich, R., Goetz, M., Vieth, M., Galle, P. R. & Neurath, M. F. Confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nature Clin. Pract. Oncol. 4, 480–490 (2007).
Yelin, D. et al. Three-dimensional miniature endoscopy. Nature 443, 765 (2006).
Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).
Grimm, J. et al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl Acad. Sci. USA 102, 14404–14409 (2005).
Zacharakis, G. et al. Volumetric tomography of fluorescent proteins through small animals in vivo . Proc. Natl Acad. Sci. USA 102, 18252–18257 (2005).
Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo . Nature Med. 12, 1429–1433 (2006). This paper describes the development of a fibre-optic imaging technique that is useful for diagnostic imaging of epithelial disease.
Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol. 24, 848–851 (2006).
Liu, Y. et al. Optical markers in duodenal mucosa predict the presence of pancreatic cancer. Clin. Cancer Res. 13, 4392–4399 (2007).
Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).
Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).
Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo . Nature 445, 661–665 (2007).
Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).
Ray, P. et al. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc. Natl Acad. Sci. USA 99, 3105–3110 (2002).
Perroy, J., Pontier, S., Charest, P. G., Aubry, M. & Bouvier, M. Real-time monitoring of ubiquitination in living cells by BRET. Nature Methods 1, 203–208 (2004).
Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003).
Paulmurugan, R., Massoud, T. F., Huang, J. & Gambhir, S. S. Molecular imaging of drug-modulated protein–protein interactions in living subjects. Cancer Res. 64, 2113–2119 (2004).
Kelly, K. et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. (in the press).
Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005). This study used libraries of nanoparticles to identify cell-specific targeting agents that can be used for in vivo labelling.
Kelly, K. A., Waterman, P. & Weissleder, R. In vivo imaging of molecularly targeted phage. Neoplasia 8, 1011–1018 (2006).
Pittet, M. J. et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc. Natl Acad. Sci. USA 104, 12457–12461 (2007).
Bulte, J. W. Intracellular endosomal magnetic labeling of cells. Methods Mol. Med. 124, 419–439 (2006).
Arbab, A. S., Liu, W. & Frank, J. A. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev. Med. Devices 3, 427–439 (2006).
Pittet, M. J., Swirski, F. K., Reynolds, F., Josephson, L. & Weissleder, R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols doi:10.1038/nprot.2006.11 (2006).
Swirski, F. K. et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2, e1075 (2007).
Boon, T., Coulie, P. G., Van den Eynde, B. J. & van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).
Romero, P. et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. 188, 1641–1650 (1998).
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).
Chen, M. L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo . Proc. Natl Acad. Sci. USA 102, 419–424 (2005).
Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Med. 13, 828–835 (2007).
Yang, L. et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).
Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).
Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749–2761 (2006). References 48 and 49 were the first in vivo studies of T-cell infiltration and motility in tumour stroma and T-cell formation of cognate-antigen-dependent contacts with tumour cells.
Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo . Nature Immunol. 1, 47–53 (2000).
Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006). This study found that T reg cells reversibly suppress CTL-mediated antitumour immunity by allowing CTLs to acquire full effector potential but withholding their 'license to kill'.
Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).
Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 7, 429–440 (2007).
Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007). This paper reports that the intravasation of breast tumour cells in vivo occurs in association with perivascular TAMs.
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).
Granot, D. et al. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res. 67, 9180–9189 (2007).
Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).
Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).
Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).
Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).
Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol. 17, 375–378 (1999).
Ntziachristos, V., Tung, C. H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo . Nature Med. 8, 757–760 (2002).
Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).
McDonald, D. M. & Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nature Med. 9, 713–725 (2003).
Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).
Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001). This study used intravital microscopy and tumour-window-chamber models to monitor gene expression, cell adhesion, delivery of therapeutics, angiogenesis and blood-vessel permeability in deep regions of tumours.
Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med. 10, 145–147 (2004).
Montet, X., Ntziachristos, V., Grimm, J. & Weissleder, R. Tomographic fluorescence mapping of tumor targets. Cancer Res. 65, 6330–6336 (2005).
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).
Contag, C. H., Jenkins, D., Contag, P. R. & Negrin, R. S. Use of reporter genes for optical measurements of neoplastic disease in vivo . Neoplasia 2, 41–52 (2000).
Lee, K. C. et al. Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Clin. Cancer Res. 13, 1839–1846 (2007).
Laxman, B. et al. Noninvasive real-time imaging of apoptosis. Proc. Natl Acad. Sci. USA 99, 16551–16555 (2002).
Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V–Cy5.5 conjugate. Proc. Natl Acad. Sci. USA 101, 12294–12299 (2004).
Blankenberg, F. G., Vanderheyden, J. L., Strauss, H. W. & Tait, J. F. Radiolabeling of HYNIC–annexin V with technetium-99m for in vivo imaging of apoptosis. Nature Protocols doi:10.1038/nprot.2006.17 (2006).
Avril, N. et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J. Clin. Oncol. 23, 7445–7453 (2005).
Lordick, F. et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 8, 797–805 (2007).
Dekker, E. & Fockens, P. New imaging techniques at colonoscopy: tissue spectroscopy and narrow band imaging. Gastrointest. Endosc. Clin. N. Am. 15, 703–714 (2005).
Herth, F. J., Eberhardt, R. & Ernst, A. The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration 73, 399–409 (2006).
Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122, 406–414 (2002).
Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004). This paper shows that cathepsins promote invasive growth and angiogenesis in pancreatic islet tumours.
McCarthy, J. R., Jaffer, F. A. & Weissleder, R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2, 983–987 (2006).
Koyama, Y. et al. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin. Cancer Res. 13, 2936–2945 (2007).
Kirsch, D. G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Med. 13, 992–997 (2007). This study combined a new mouse model of soft-tissue sarcoma that mimics human sarcomas with a hand-held imaging device that identifies residual tumour tissue during intra-operative molecular imaging.
Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).
Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003).
Rontgen, W. C. On a new kind of rays. Nature 53, 274–276 (1896).
Drexler, B., Davis, J. L. & Schofield, G. Diaphanography in the diagnosis of breast cancer. Radiology 157, 41–44 (1985).
Figueiredo, J. L., Alencar, H., Weissleder, R. & Mahmood, U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int. J. Cancer 118, 2672–2677 (2006).
Ntziachristos, V., Yodh, A. G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl Acad. Sci. USA 97, 2767–2772 (2000).
Drahl, C., Cravatt, B. F. & Sorensen, E. J. Protein-reactive natural products. Angew. Chem. Int. Ed. Engl. 44, 5788–5809 (2005).
Roberti, M. J., Bertoncini, C. W., Klement, R., Jares-Erijman, E. A. & Jovin, T. M. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nature Methods 4, 345–351 (2007).
Venkatraman, P. et al. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nature Chem. Biol. 3, 222–228 (2007).
Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).
Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).
Georgakoudi, I. et al. In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res. 64, 5044–5047 (2004). This paper reports the first in vivo flow-cytometry-based method for quantifying circulating tumour cells.
Boutrus, S. et al. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J. Biomed. Opt. 12, 020507, doi:10.1117/1.2722733 (2007).
He, W., Wang, H., Hartmann, L. C., Cheng, J. X. & Low, P. S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl Acad. Sci. USA 104, 11760–11765 (2007).
Nagrath, S., Haber, D. A. & Toner, M. Isolation of rare circulating epithelial cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).
Lee, H., Sun, E. Y., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nature Med. (in the press). This study developed a low-cost diagnostic MRI platform for rapid, quantitative, multichannel detection of biological targets in unprocessed samples.
Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).
Acknowledgements
The authors acknowledge financial support from the National Institutes of Health.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
R.W. holds shares in VisEn Medical.
Additional information
Reprints and permissions information is available at http://npg.nature.com/reprints.
Correspondence should be addressed to R.W. (rweissleder@mgh.harvard.edu).
Rights and permissions
About this article
Cite this article
Weissleder, R., Pittet, M. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). https://doi.org/10.1038/nature06917
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06917
This article is cited by
-
Enhancing the deep-red/near-infrared fluorescence of higher rylene diimides via the chalcogen-annulation strategy
Science China Chemistry (2024)
-
In vivo imaging of prostate tumor-targeted folic acid conjugated quantum dots
Cancer Nanotechnology (2023)
-
Oncogene-targeting nanoprobes for early imaging detection of tumor
Journal of Nanobiotechnology (2023)
-
New opportunities for RGD-engineered metal nanoparticles in cancer
Molecular Cancer (2023)
-
Tannic acid-mediated synthesis of flower-like mesoporous MnO2 nanostructures as T1–T2 dual-modal MRI contrast agents and dual-enzyme mimetic agents
Scientific Reports (2023)