Abstract
In the past decade, there have been remarkable advances in proteomic technologies. Mass spectrometry has emerged as the preferred method for in-depth characterization of the protein components of biological systems. Using mass spectrometry, key insights into the composition, regulation and function of molecular complexes and pathways have been gained. From these studies, it is clear that mass-spectrometry-based proteomics is now a powerful 'hypothesis-generating engine' that, when combined with complementary molecular, cellular and pharmacological techniques, provides a framework for translating large data sets into an understanding of complex biological processes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Whisstock, J. C. & Lesk, A. M. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307–340 (2003).
Galperin, M. Y. & Koonin, E. V. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res. 32, 5452–5463 (2004).
Zhu, H., Bilgin, M. & Snyder, M. Proteomics. Annu. Rev. Biochem. 72, 783–812 (2003).
de Hoog, C. L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004).
MacBeath, G. Protein microarrays and proteomics. Nature Genet. 32 (suppl.), 526–532 (2002).
Hall, D. A., Ptacek, J. & Snyder, M. Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007).
Causier, B. Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spectrom. Rev. 23, 350–367 (2004).
Stevens, R. C., Yokoyama, S. & Wilson, I. A. Global efforts in structural genomics. Science 294, 89–92 (2001).
Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).
Yates, J. R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).
Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006).
Andersen, J. S. & Mann, M. Organellar proteomics: turning inventories into insights. EMBO Rep. 7, 874–879 (2006).
Cusick, M. E., Klitgord, N., Vidal, M. & Hill, D. E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14, R171–R181 (2005).
Michnick, S. W. Proteomics in living cells. Drug Discov. Today 9, 262–267 (2004).
Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998).
Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).
Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biol. 6, 97–105 (2004).
Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).
Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003).
Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).
Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).
Coulombe, B., Jeronimo, C., Langelier, M. F., Cojocaru, M. & Bergeron, D. Interaction networks of the molecular machines that decode, replicate, and maintain the integrity of the human genome. Mol. Cell. Proteomics 3, 851–856 (2004).
Ranish, J. A. et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genet. 36, 707–713 (2004).
Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).
Cenkci, B., Petersen, J. L. & Small, G. D. REX1, a novel gene required for DNA repair. J. Biol. Chem. 278, 22574–22577 (2003).
Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004).
Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genet. 26, 307–313 (2000).
Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae . Nature 440, 637–643 (2006).
Krebs, M. P., Noorwez, S. M., Malhotra, R. & Kaushal, S. Quality control of integral membrane proteins. Trends Biochem. Sci. 29, 648–655 (2004).
Kelly, J. W. & Balch, W. E. The integration of cell and chemical biology in protein folding. Nature Chem. Biol. 2, 224–227 (2006).
Riordan, J. R. Assembly of functional CFTR chloride channels. Annu. Rev. Physiol. 67, 701–718 (2005).
Qu, B. H., Strickland, E. H. & Thomas, P. J. Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J. Biol. Chem. 272, 15739–15744 (1997).
Loo, M. A. et al. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887 (1998).
Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).
Wang, X. et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815 (2006).
Washburn, M. P., Wolters, D. & Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).
Hanash, S. Disease proteomics. Nature 422, 226–232 (2003).
Kumar, N. et al. Molecular complexity of sexual development and gene regulation in Plasmodium falciparum . Int. J. Parasitol. 34, 1451–1458 (2004).
Khan, S. M. et al. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675–687 (2005).
Ward, P., Equinet, L., Packer, J. & Doerig, C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79 (2004).
Jessani, N. & Cravatt, B. F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol. 8, 54–59 (2004).
Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).
Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteome using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).
Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nature Methods 2, 691–697 (2005).
Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nature Biotechnol. 21, 687–691 (2003).
Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).
Chiang, K. P., Niessen, S., Saghatelian, A. & Cravatt, B. F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006).
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).
Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31, 402–410 (2006).
Oda, Y., Huang, K., Cross, F. R., Cowburn, D. & Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).
Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol. 7, 952–958 (2006).
Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007).
Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).
Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).
Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnol. 23, 94–101 (2005).
Jin, M. et al. Quantitative analysis of protein phosphorylation in mouse brain by hypothesis-driven multistage mass spectrometry. Anal. Chem. 77, 7845–7851 (2005).
Huang, P. H. et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl Acad. Sci. USA 104, 12867–12872 (2007).
Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).
Garcia, B. A., Pesavento, J. J., Mizzen, C. A. & Kelleher, N. L. Pervasive combinatorial modification of histone H3 in human cells. Nature Methods 4, 487–489 (2007).
Ong, S. E., Mittler, G. & Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nature Methods 1, 119–126 (2004).
Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nature Chem. Biol. 3, 339–348 (2007).
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003).
Mukhopadhyay, A. & Tissenbaum, H. A. Reproduction and longevity: secrets revealed by C. elegans . Trends Cell Biol. 17, 65–71 (2007).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Dong, M. Q. et al. Quantitative mass spectrometry identifies new insulin targets in C. elegans . Science 317, 660–663 (2007).
Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods 1, 39–45 (2004).
Liu, H., Sadygov, R. G. & Yates, J. R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).
Wu, C. C., MacCoss, M. J., Howell, K. E., Matthews, D. E. & Yates, J. R. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).
Perrimon, N. & Mathey-Pervot, B. Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics 175, 7–16 (2007).
Zabrouskov, V., Senko, M. W., Du, Y., Leduc, R. D. & Kelleher, N. L. New and automated MS n approaches for top-down identification of modified proteins. J. Am. Soc. Mass Spectrom. 16, 2027–2038 (2005).
Conrads, T. P., Anderson, G. A., Veenstra, T. D., Pasa-Tolic, L. & Smith, R. D. Utility of accurate mass tags for proteome-wide protein identification. Anal. Chem. 72, 3349–3354 (2000).
Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).
MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA 99, 7900–7905 (2002).
Acknowledgements
We gratefully acknowledge the support of the National Institutes of Health.
Author information
Authors and Affiliations
Additional information
Correspondence should be addressed to B.F.C. (cravatt@scripps.edu) or J.R.Y. (jyates@scripps.edu).
Rights and permissions
About this article
Cite this article
Cravatt, B., Simon, G. & Yates III, J. The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007). https://doi.org/10.1038/nature06525
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06525