Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subunit arrangement and function in NMDA receptors

Abstract

Excitatory neurotransmission mediated by NMDA (N-methyl-d-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1–NR2A heterodimer with glutamate and glycine. The NR2A–glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1–NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1–NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligomeric arrangement in NMDA receptors.
Figure 2: Structure of NR1–NR2A S1S2.
Figure 3: Engineering disulphide bonds at the NR1–NR2A heterodimer interface.
Figure 4: Heterodimerization is favoured in NR1 S1S2 N521Y and NR2A S1S2 E516Y.
Figure 5: Superposition of NR1–NR2A S1S2 and the GluR2 S1S2–aniracetam complex.
Figure 6: Residue NR1 Y535 modulates the rate of NMDA receptor deactivation.

Similar content being viewed by others

References

  1. Kandel, E. R., Schwartz, J. H. & Jessel, T. M. Essentials of Neural Science and Behavior 219–306 (Appleton & Lange, East Norwalk, Connecticut, 1995)

    Google Scholar 

  2. Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981)

    Article  CAS  Google Scholar 

  3. Hollmann, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648 (1989)

    Article  ADS  CAS  Google Scholar 

  4. Keinänen, K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990)

    Article  ADS  Google Scholar 

  5. Boulter, J. et al. Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033–1037 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Werner, P., Voigt, M., Keinänen, K., Wisden, W. & Seeburg, P. H. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742–744 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Moriyoshi, K. et al. Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–37 (1991)

    Article  ADS  CAS  Google Scholar 

  8. Johnson, J. W. & Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987)

    Article  ADS  CAS  Google Scholar 

  9. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984)

    Article  ADS  CAS  Google Scholar 

  10. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519–522 (1986)

    Article  ADS  CAS  Google Scholar 

  11. Forsythe, I. D. & Westbrook, G. L. Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. J. Physiol. 396, 515–533 (1988)

    Article  CAS  Google Scholar 

  12. Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998)

    Article  CAS  Google Scholar 

  13. Lester, R. A., Clements, J. D., Westbrook, G. L. & Jahr, C. E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990)

    Article  ADS  CAS  Google Scholar 

  14. Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001)

    Article  CAS  Google Scholar 

  15. Waxman, E. A. & Lynch, D. R. N-methyl-d-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49 (2005)

    Article  CAS  Google Scholar 

  16. Benveniste, M. & Mayer, M. L. Kinetic analysis of antagonist action at N-methyl-d-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560–573 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Clements, J. D. & Westbrook, G. L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605–613 (1991)

    Article  CAS  Google Scholar 

  18. Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3, 1138–1140 (1992)

    Article  CAS  Google Scholar 

  19. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994)

    Article  CAS  Google Scholar 

  20. Laurie, D. J. & Seeburg, P. H. Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 268, 335–345 (1994)

    Article  CAS  Google Scholar 

  21. Erreger, K., Chen, P. E., Wyllie, D. J. & Traynelis, S. F. Glutamate receptor gating. Crit. Rev. Neurobiol. 16, 187–224 (2004)

    Article  CAS  Google Scholar 

  22. Ayalon, G. & Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103–113 (2001)

    Article  CAS  Google Scholar 

  23. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000)

    Article  CAS  Google Scholar 

  24. Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Schorge, S. & Colquhoun, D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23, 1151–1158 (2003)

    Article  CAS  Google Scholar 

  26. Meddows, E. et al. Identification of molecular determinants that are important in the assembly of N-methyl-d-aspartate receptors. J. Biol. Chem. 276, 18795–18803 (2001)

    Article  CAS  Google Scholar 

  27. Regalado, M. P., Villarroel, A. & Lerma, J. Intersubunit cooperativity in the NMDA receptor. Neuron 32, 1085–1096 (2001)

    Article  CAS  Google Scholar 

  28. Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO. J. 22, 2873–2885 (2003)

    Article  CAS  Google Scholar 

  29. Inanobe, A., Furukawa, H. & Gouaux, E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005)

    Article  CAS  Google Scholar 

  30. Jin, R., Horning, M., Mayer, M. L. & Gouaux, E. Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry 41, 15635–15643 (2002)

    Article  CAS  Google Scholar 

  31. Armstrong, N., Sun, Y., Chen, G. Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998)

    Article  ADS  CAS  Google Scholar 

  32. Mayer, M. L. Crystal Structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45, 539–552 (2005)

    Article  CAS  Google Scholar 

  33. Nanao, M. H., Green, T., Stern-Bach, Y., Heinemann, S. F. & Choe, S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc. Natl Acad. Sci. U S A 102, 1708–1713 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Laube, B., Schemm, R. & Betz, H. Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor. Neuropharmacology 47, 994–1007 (2004)

    Article  CAS  Google Scholar 

  35. Watkins, J. C., Krogsgaard-Larsen, P. & Honore, T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11, 25–33 (1990)

    Article  CAS  Google Scholar 

  36. Choi, Y., Chen, H. V. & Lipton, S. A. Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor. J. Neurosci. 21, 392–400 (2001)

    Article  CAS  Google Scholar 

  37. Folta-Stogniew, E. & Williams, K. R. Determination of molecular masses of proteins in solution: implementation of an HPLC size exclusion chromatography and laser light scattering service in a core laboratory. J. Biomol. Technol. 10, 51–63 (1999)

    CAS  Google Scholar 

  38. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998)

    Article  CAS  Google Scholar 

  39. Jin, R. et al. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25, 9027–9036 (2005)

    Article  CAS  Google Scholar 

  40. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005)

    Article  CAS  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  42. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  43. Navaza, J. Amore: An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  44. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986)

    Article  Google Scholar 

  45. Cowtan, K. D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D Biol. Crystallogr. 52, 43–48 (1996)

    Article  CAS  Google Scholar 

  46. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54(5), 905–921 (1998)

    Article  CAS  Google Scholar 

  47. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997)

    Article  CAS  Google Scholar 

  48. Yphantis, D., Johnson, M. L. & Lary, J. W. WinNONLIN106 program. (National Analytical Ultracentrifugation Facility, Univ. Connecticut, Storrs, CT, 1997).

  49. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000)

    Article  ADS  CAS  Google Scholar 

  50. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Rowe for comments on the sedimentation equilibrium data analysis. M. Mayer is thanked for discussions, critical reading of this manuscript, and pSP NR1-1a and NR2A. J. Howe and S. Traynelis are thanked for comments on electrophysiological experiments and for the TsA201 cell-line and pCINEO NR1-1a and NR2A, respectively. We thank N. Armstrong, W. Zhang, and A. Robert for instructions on the patch-clamp and rapid solution exchange experiments; R. Abramowitz and X. Yang for assistance with the X-ray experiments; S. Siegelbaum for providing Xenopus oocytes; and A. Sobolevsky and O. Boudker for critically reading the manuscript. The NR1 and NR2A cDNAs used in the structural analysis were a gift from S. F. Heinemann. S.K.S is supported by an NIH National Research Service Award postdoctoral fellowship. The Beckman XL-I analytical centrifuge was purchased with funds from the NIH. The work was supported by the NIH. E.G. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The coordinates and structure factors for NR1–NR2A S1S2 and NR2A S1S2–glutamate have been deposited in the Protein Data Bank with accession codes 2A5T and 2A5S, respectively. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figure Legends, Supplementary Tables 1–4 and Supplementary Figures 1–4. (PDF 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, H., Singh, S., Mancusso, R. et al. Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005). https://doi.org/10.1038/nature04089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing