Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common mechanisms of nerve and blood vessel wiring

Abstract

Blood vessels and nerve fibres course throughout the body in an orderly pattern, often alongside one another. Although superficially distinct, the mechanisms involved in wiring neural and vascular networks seem to share some deep similarities. The discovery of key axon guidance molecules over the past decade has shown that axons are guided to their targets by finely tuned codes of attractive and repulsive cues, and recent studies reveal that these cues also help blood vessels to navigate to their targets. Parallels have also emerged between the actions of growth factors that direct angiogenic sprouting and those that regulate axon terminal arborization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallels in vessel and nerve patterning.
Figure 2: Stereotyped axon and vessel navigation.
Figure 3: Growth factor gradients determine vessel and axon branching.
Figure 4: Principal axon guidance cues and their receptors.
Figure 5: Mechanisms regulating midline axon guidance.
Figure 6: Role of guidance signals in intersomitic vessel guidance.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996)

    ADS  CAS  PubMed  Google Scholar 

  2. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002)

    ADS  CAS  PubMed  Google Scholar 

  3. Huber, A. B., Kolodkin, A. L., Ginty, D. D. & Cloutier, J. F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003)

    CAS  PubMed  Google Scholar 

  4. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 (suppl.), 77–98 (1993)

    PubMed  Google Scholar 

  5. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003)

    CAS  PubMed  Google Scholar 

  6. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Honma, Y. et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35, 267–282 (2002)

    CAS  PubMed  Google Scholar 

  8. Kuruvilla, R. et al. A neurotrophin signalling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signalling. Cell 118, 243–255 (2004)

    CAS  PubMed  Google Scholar 

  9. Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D. J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002)

    CAS  PubMed  Google Scholar 

  10. Saharinen, P., Tammela, T., Karkkainen, M. J. & Alitalo, K. Lymphatic vasculature: development, molecular regulation and role in tumour metastasis and inflammation. Trends Immunol. 25, 387–395 (2004)

    CAS  PubMed  Google Scholar 

  11. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumour cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998)

    CAS  PubMed  Google Scholar 

  12. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)

    CAS  PubMed  Google Scholar 

  13. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983)

    ADS  CAS  PubMed  Google Scholar 

  15. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989)

    ADS  CAS  PubMed  Google Scholar 

  16. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996)

    ADS  CAS  PubMed  Google Scholar 

  17. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996)

    ADS  CAS  PubMed  Google Scholar 

  18. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999)

    CAS  PubMed  Google Scholar 

  20. Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davies, A. M. Neurotrophins: more to NGF than just survival. Curr. Biol. 10, R374–R376 (2000)

    CAS  PubMed  Google Scholar 

  22. Glebova, N. O. & Ginty, D. D. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci. 24, 743–751 (2004)

    CAS  PubMed  Google Scholar 

  23. Hoyle, G. W., Mercer, E. H., Palmiter, R. D. & Brinster, R. L. Expression of NGF in sympathetic neurons leads to excessive axon outgrowth from ganglia but decreased terminal innervation within tissues. Neuron 10, 1019–1034 (1993)

    CAS  PubMed  Google Scholar 

  24. Diamond, J., Holmes, M. & Coughlin, M. Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J. Neurosci. 12, 1454–1466 (1992)

    CAS  PubMed  Google Scholar 

  25. Gallo, G. & Letourneau, P. C. Localized sources of neurotrophins initiate axon collateral sprouting. J. Neurosci. 18, 5403–5414 (1998)

    CAS  PubMed  Google Scholar 

  26. Charron, F. & Tessier-Lavigne, M. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132, 2251–2262 (2005)

    CAS  PubMed  Google Scholar 

  27. Song, H. & Poo, M. The cell biology of neuronal navigation. Nature Cell Biol. 3, E81–E88 (2001)

    CAS  PubMed  Google Scholar 

  28. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G., Dodd, J. & Jessell, T. M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778 (1988)

    ADS  CAS  PubMed  Google Scholar 

  29. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990)

    CAS  PubMed  Google Scholar 

  30. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994)

    CAS  PubMed  Google Scholar 

  31. Deiner, M. S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997)

    CAS  PubMed  Google Scholar 

  32. Shirasaki, R., Katsumata, R. & Murakami, F. Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279, 105–107 (1998)

    ADS  CAS  PubMed  Google Scholar 

  33. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001)

    ADS  CAS  PubMed  Google Scholar 

  34. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999)

    CAS  PubMed  Google Scholar 

  35. Keleman, K. & Dickson, B. J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001)

    CAS  PubMed  Google Scholar 

  36. Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004)

    ADS  CAS  PubMed  Google Scholar 

  37. Park, K. W. et al. The axonal attractant Netrin-1 is an angiogenic factor. Proc. Natl Acad. Sci. USA 101, 16210–16215 (2004)

    ADS  CAS  PubMed  Google Scholar 

  38. Corset, V. et al. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407, 747–750 (2000)

    ADS  CAS  PubMed  Google Scholar 

  39. Kolodkin, A. L. et al. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9, 831–845 (1992)

    CAS  PubMed  Google Scholar 

  40. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993)

    CAS  PubMed  Google Scholar 

  41. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997)

    CAS  PubMed  Google Scholar 

  42. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997)

    CAS  PubMed  Google Scholar 

  43. Chen, H., Chedotal, A., He, Z., Goodman, C. S. & Tessier-Lavigne, M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19, 547–559 (1997)

    CAS  PubMed  Google Scholar 

  44. Fujisawa, H. Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J. Neurobiol. 59, 24–33 (2004)

    CAS  PubMed  Google Scholar 

  45. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005)

    ADS  CAS  PubMed  Google Scholar 

  46. Pasterkamp, R. J., Peschon, J. J., Spriggs, M. K. & Kolodkin, A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424, 398–405 (2003)

    ADS  PubMed  Google Scholar 

  47. Bagri, A., Cheng, H. J., Yaron, A., Pleasure, S. J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003)

    CAS  PubMed  Google Scholar 

  48. Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146, 233–242 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Basile, J. R., Barac, A., Zhu, T., Guan, K. L. & Gutkind, J. S. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res. 64, 5212–5224 (2004)

    CAS  PubMed  Google Scholar 

  50. Gitler, A. D., Lu, M. M. & Epstein, J. A. PlexinD1 and semaphorin signalling are required in endothelial cells for cardiovascular development. Dev. Cell 7, 107–116 (2004)

    CAS  PubMed  Google Scholar 

  51. Torres-Vazquez, J. et al. Semaphorin-plexin signalling guides patterning of the developing vasculature. Dev. Cell 7, 117–123 (2004)

    CAS  PubMed  Google Scholar 

  52. Shoji, W., Isogai, S., Sato-Maeda, M., Obinata, M. & Kuwada, J. Y. Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development 130, 3227–3236 (2003)

    CAS  PubMed  Google Scholar 

  53. Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424, 391–397 (2003)

    ADS  CAS  PubMed  Google Scholar 

  54. Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129, 4797–4806 (2002)

    CAS  PubMed  Google Scholar 

  55. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999)

    CAS  PubMed  Google Scholar 

  56. Takashima, S. et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc. Natl Acad. Sci. USA 99, 3657–3662 (2002)

    ADS  CAS  PubMed  Google Scholar 

  57. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signalling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998)

    CAS  PubMed  Google Scholar 

  59. Zallen, J. A., Yi, B. A. & Bargmann, C. I. The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227 (1998)

    CAS  PubMed  Google Scholar 

  60. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999)

    CAS  PubMed  Google Scholar 

  61. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999)

    CAS  PubMed  Google Scholar 

  62. Li, H. S. et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999)

    CAS  PubMed  Google Scholar 

  63. Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999)

    CAS  PubMed  Google Scholar 

  64. Long, H. et al. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42, 213–223 (2004)

    CAS  PubMed  Google Scholar 

  65. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998)

    CAS  PubMed  Google Scholar 

  66. Keleman, K. et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002)

    CAS  PubMed  Google Scholar 

  67. Keleman, K., Ribeiro, C. & Dickson, B. J. Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Nature Neurosci. 8, 156–163 (2005)

    CAS  PubMed  Google Scholar 

  68. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004)

    CAS  PubMed  Google Scholar 

  69. Jen, J. C. et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304, 1509–1513 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rajagopalan, S., Nicolas, E., Vivancos, V., Berger, J. & Dickson, B. J. Crossing the midline: roles and regulation of Robo receptors. Neuron 28, 767–777 (2000)

    CAS  PubMed  Google Scholar 

  71. Simpson, J. H., Kidd, T., Bland, K. S. & Goodman, C. S. Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28, 753–766 (2000)

    CAS  PubMed  Google Scholar 

  72. Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002)

    CAS  PubMed  Google Scholar 

  73. Kim, S. & Chiba, A. Dendritic guidance. Trends Neurosci. 27, 194–202 (2004)

    CAS  PubMed  Google Scholar 

  74. Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003)

    CAS  PubMed  Google Scholar 

  75. Suchting, S., Heal, P., Tahtis, K., Stewart, L. M. & Bicknell, R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J. 19, 121–123 (2005)

    CAS  PubMed  Google Scholar 

  76. Bedell, V. M. et al. roundabout4 is essential for angiogenesis in vivo. Proc. Natl Acad. Sci. USA 102, 6373–6378 (2005)

    ADS  CAS  PubMed  Google Scholar 

  77. Wang, B. et al. Induction of tumour angiogenesis by Slit-Robo signalling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003)

    PubMed  Google Scholar 

  78. Palmer, A. & Klein, R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev. 17, 1429–1450 (2003)

    CAS  PubMed  Google Scholar 

  79. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995)

    CAS  PubMed  Google Scholar 

  80. Cheng, H. J., Nakamoto, M., Bergemann, A. D. & Flanagan, J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995)

    CAS  PubMed  Google Scholar 

  81. Nakagawa, S. et al. Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25, 599–610 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams, S. E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003)

    CAS  PubMed  Google Scholar 

  83. Kullander, K. et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 15, 877–888 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yokoyama, N. et al. Forward signalling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29, 85–97 (2001)

    CAS  PubMed  Google Scholar 

  85. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000)

    CAS  PubMed  Google Scholar 

  86. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signalling. Cell 102, 77–88 (2000)

    CAS  PubMed  Google Scholar 

  87. Hansen, M. J., Dallal, G. E. & Flanagan, J. G. Retinal axon response to ephrin-as shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42, 717–730 (2004)

    CAS  PubMed  Google Scholar 

  88. Augustin, H. G. & Reiss, Y. EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis. Cell Tissue Res. 314, 25–31 (2003)

    CAS  PubMed  Google Scholar 

  89. Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999)

    CAS  PubMed  Google Scholar 

  90. Adams, R. H. et al. The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57–69 (2001)

    CAS  PubMed  Google Scholar 

  91. Fuller, T., Korff, T., Kilian, A., Dandekar, G. & Augustin, H. G. Forward EphB4 signalling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J. Cell Sci. 116, 2461–2470 (2003)

    PubMed  Google Scholar 

  92. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005)

    PubMed  PubMed Central  Google Scholar 

  93. Oike, Y. et al. Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signalling between endothelial cells and surrounding mesenchymal cells. Blood 100, 1326–1333 (2002)

    CAS  PubMed  Google Scholar 

  94. Pandey, A., Shao, H., Marks, R. M., Polverini, P. J. & Dixit, V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-α-induced angiogenesis. Science 268, 567–569 (1995)

    ADS  CAS  PubMed  Google Scholar 

  95. Ogawa, K. et al. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumour neovascularization. Oncogene 19, 6043–6052 (2000)

    CAS  PubMed  Google Scholar 

  96. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature Rev. Genet. 4, 710–720 (2003)

    CAS  PubMed  Google Scholar 

  97. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001)

    ADS  CAS  PubMed  Google Scholar 

  98. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004)

    CAS  PubMed  Google Scholar 

  99. Schwarz, Q. et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev. 18, 2822–2834 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Williams, S. E., Mason, C. A. & Herrera, E. The optic chiasm as a midline choice point. Curr. Opin. Neurobiol. 14, 51–60 (2004)

    CAS  PubMed  Google Scholar 

  101. Vesalius, A. De Humani Corporis Fabrica (The Fabric of the Human Body) (Oporinus, Basel, 1543).

  102. Ramon y Cajal, S. Sur l'origine et les ramifications des fibres nerveuses de la moelle embryonaire. Anat. Anz. 5, 609–613 (1890)

    Google Scholar 

  103. Wessels, N. K. & Nuttall, R. P. Normal branching, induced branching, and steering of cultured parasympathetic motor neurons. Exp. Cell Res. 115, 111–122 (1978)

    Google Scholar 

  104. Aristotle On the Parts of Animals (eBooks@Adelaide, The University of Adelaide Library, University of Adelaide, 2004); http://etext.library.adelaide.edu.au/a/aristotle/parts/index.html.

Download references

Acknowledgements

We regret that, owing to space limitations, we have been unable to refer to all of the primary literature and had to rely instead, in many instances, on reviews. We thank T. Jessell and R. Watts for comments on the manuscript. P.C. is supported by grants from the FWO, the European Union and the Concerted Research Activities of Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

M.T.-L. is an employee of Genentech Inc. and a member of the scientific advisory board of Renovis Inc. Both companies have a commercial interest in some of the molecules described here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P., Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005). https://doi.org/10.1038/nature03875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03875

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing