Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors

Abstract

Members of the nuclear receptor (NR) superfamily of transcription factors modulate gene transcription in response to small lipophilic molecules1. Transcriptional activity is regulated by ligands binding to the carboxy-terminal ligand-binding domains (LBDs) of cognate NRs. A subgroup of NRs referred to as ‘orphan receptors’ lack identified ligands, however, raising issues about the function of their LBDs2. Here we report the crystal structure of the LBD of the orphan receptor Nurr1 at 2.2 Å resolution. The Nurr1 LBD adopts a canonical protein fold resembling that of agonist-bound, transcriptionally active LBDs in NRs3, but the structure has two distinctive features. First, the Nurr1 LBD contains no cavity as a result of the tight packing of side chains from several bulky hydrophobic residues in the region normally occupied by ligands. Second, Nurr1 lacks a ‘classical’ binding site for coactivators. Despite these differences, the Nurr1 LBD can be regulated in mammalian cells. Notably, transcriptional activity is correlated with the Nurr1 LBD adopting a more stable conformation. Our findings highlight a unique structural class of NRs and define a model for ligand-independent NR function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon representations of NR LBD structures.
Figure 2: No ligand-binding cavity in Nurr1.
Figure 3: The region of the coactivator-binding site.
Figure 4: The stability of the Nurr1 LBD correlates with cell-specific transcriptional activity.
Figure 5: Receptor tyrosine kinase activated intracellular signalling modulates Nurr1 LBD activity and stability.

Similar content being viewed by others

References

  1. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giguere, V. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689–725 (1999)

    CAS  PubMed  Google Scholar 

  3. Moras, D. & Gronemeyer, H. The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10, 384–391 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kliewer, S. A., Lehmann, J. M. & Willson, T. M. Orphan nuclear receptors: shifting endocrinology into reverse. Science 284, 757–760 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Wisely, G. B. et al. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 10, 1225–1234 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y. I. & Shoelson, S. E. Crystal structure of the HNF4α ligand binding domain in complex with endogenous fatty acid ligand. J. Biol. Chem. 277, 37973–37976 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Law, S. W., Conneely, O. M., DeMayo, F. J. & O'Malley, B. W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 6, 2129–2135 (1992)

    CAS  PubMed  Google Scholar 

  9. Zetterstrom, R. H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA 95, 4013–4018 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le, W. D. et al. Mutations in NR4A2 associated with familial Parkinson disease. Nature Genet. 33, 85–89 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Castro, D. S., Arvidsson, M., Bondesson Bolin, M. & Perlmann, T. Activity of the Nurr1 carboxyl-terminal domain depends on cell type and integrity of the activation function 2. J. Biol. Chem. 274, 37483–37490 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Wurtz, J. M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct. Biol. 3, 87–94 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Renaud, J. P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Nolte, R. T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Greschik, H. et al. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol. Cell 9, 303–313 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama, K. et al. The NGFI-B subfamily of the nuclear receptor superfamily. Int. J. Oncol. 12, 1237–1243 (1998)

    CAS  PubMed  Google Scholar 

  19. Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pissios, P., Tzameli, I., Kushner, P. & Moore, D. D. Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. Mol. Cell 6, 245–253 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Aarnisalo, P., Kim, C. H., Lee, J. W. & Perlmann, T. Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J. Biol. Chem. 277, 35118–35123 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Laudet, V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Endocrinol. 19, 207–226 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Escriva, H. et al. Ligand binding was acquired during evolution of nuclear receptors. Proc. Natl Acad. Sci. USA 94, 6803–6808 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desclozeaux, M., Krylova, I. N., Horn, F., Fletterick, R. J. & Ingraham, H. A. Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol. Cell. Biol. 22, 7193–7203 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Renaud, J. P., Harris, J. M., Downes, M., Burke, L. J. & Muscat, G. E. Structure–function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains. Mol. Endocrinol. 14, 700–717 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Collaborative Computational Project Number 4 The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  27. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  30. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Cao for MS analysis, J. Lehmann, A. Shiau, B. Shan, C. Ibanez, A. Mata and Ö. Wrange for discussions and advice. This work was supported in part by the Göran Gustafsson Foundation, The European Union Research Training Network and the Swedish Foundation for Strategic Research. The Advanced Light Source at the Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Sciences, Materials Sciences Division, of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nigel P. C. Walker or Thomas Perlmann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Benoit, G., Liu, J. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003). https://doi.org/10.1038/nature01645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing