Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

miR-9 is a tumor suppressor in pediatric AML with t(8;21)

Abstract

MicroRNAs (miRNAs) play a pivotal role in the regulation of hematopoiesis and development of leukemia. Great interest emerged in modulating miRNA expression for therapeutic purposes. In order to identify miRNAs, which specifically suppress leukemic growth of acute myeloid leukemia (AML) with t(8;21), inv(16) or mixed lineage leukemia (MLL) rearrangement by inducing differentiation, we conducted a miRNA expression profiling in a cohort of 90 cytogenetically characterized, de novo pediatric AML cases. Four miRNAs, specifically downregulated in MLL-rearranged, t(8;21) or inv(16) AMLs, were characterized by their tumor-suppressive properties in cell lines representing those respective cytogenetic groups. Among those, forced expression of miR-9 reduced leukemic growth and induced monocytic differentiation of t(8;21) AML cell lines in vitro and in vivo. The tumor-suppressive functions of miR-9 were specifically restricted to AML cell lines and primary leukemic blasts with t(8;21). On the other hand, these functions were not evident in AML blasts from patients with MLL rearrangements. We showed that miR-9 exerts its effects through the cooperation with let-7 to repress the oncogenic LIN28B/HMGA2 axis. Thus, miR-9 is a tumor suppressor-miR which acts in a stringent cell context-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 2012; 120: 3187–3205.

    Article  CAS  Google Scholar 

  2. Balgobind BV, Hollink IHIM, Arentsen-Peters STCJM, Zimmermann M, Harbott J, Beverloo B et al. Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 2011; 96: 1478–1487.

    Article  Google Scholar 

  3. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  4. Zhang L, Sankaran VG, Lodish HF . MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia 2012; 26: 2310–2316.

    Article  CAS  Google Scholar 

  5. Bartel DP, Chen C-Z . Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400.

    Article  CAS  Google Scholar 

  6. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res 2010; 20: 589–599.

    Article  CAS  Google Scholar 

  7. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJM, Lowenberg B, Löwenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  Google Scholar 

  8. Maki K, Yamagata T, Sugita F, Nakamura Y, Sasaki K, Mitani K . Aberrant expression of MIR9 indicates poor prognosis in acute myeloid leukaemia. Br J Haematol 2012; 158: 283–285.

    Article  CAS  Google Scholar 

  9. Sun SM, Rockova V, Bullinger L, Dijkstra MK, Döhner H, Löwenberg B et al. The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia 2013; 27: 100–106.

    Article  CAS  Google Scholar 

  10. Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 5257–5264.

    Article  CAS  Google Scholar 

  11. Oorschot AAD, Kuipers JE, Arentsen-peters S, Schotte D, Reinhardt D, De Haas V et al. Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr Blood Cancer 2011; 2: 1–7.

    Google Scholar 

  12. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  Google Scholar 

  13. Batliner J, Buehrer E, Federzoni EA, Jenal M, Tobler A, Torbett BE et al. Transcriptional regulation of MIR29B by PU.1 (SPI1) and MYC during neutrophil differentiation of acute promyelocytic leukaemia cells. Br J Haematol 2012; 157: 270–274.

    Article  CAS  Google Scholar 

  14. Klusmann JH, Li Z, Böhmer K, Maroz A, Koch ML, Emmrich S et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 2010; 24: 478–490.

    Article  CAS  Google Scholar 

  15. Mims A, Walker AR, Huang X, Sun J, Wang H, Santhanam R et al. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2013; 27: 871–878.

    Article  CAS  Google Scholar 

  16. Bai H, Cao Z, Deng C, Zhou L, Wang C . miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol 2012; 138: 595–602.

    Article  CAS  Google Scholar 

  17. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  Google Scholar 

  18. Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia 2014; 28: 577–588.

    Article  CAS  Google Scholar 

  19. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 2006; 108: 3520–3529.

    Article  CAS  Google Scholar 

  20. Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann JH . miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol 2012; 91: 1673–1684.

    Article  CAS  Google Scholar 

  21. Loya CM, Lu CS, Van Vactor D, Fulga TA . Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009; 6: 897–903.

    Article  CAS  Google Scholar 

  22. Maetzig T, Galla M, Brugman MH, Loew R, Baum C, Schambach A . Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Ther 2010; 17: 400–411.

    Article  CAS  Google Scholar 

  23. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 2010; 24: 1659–1672.

    Article  CAS  Google Scholar 

  24. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2011.

  25. Smyth GK . Linear models and emperical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1–25.

    Article  Google Scholar 

  26. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T . miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37: D105–D110.

    Article  CAS  Google Scholar 

  27. Wang X . miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA 2008; 14: 1012–1017.

    Article  CAS  Google Scholar 

  28. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E . The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39: 1278–1284.

    Article  CAS  Google Scholar 

  29. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  30. Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012; 119: 2314–2324.

    Article  CAS  Google Scholar 

  31. Petriv OI, Kuchenbauer F, Delaney AD, Lecault V, White A, Kent D et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. PNAS 2010; 107: 15443–15448.

    Article  CAS  Google Scholar 

  32. Hegde SP, Zhao J, Ashmun RA, Shapiro LH . c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 1999; 94: 1578–1589.

    CAS  PubMed  Google Scholar 

  33. Aziz A, Soucie E, Sarrazin S, Sieweke MH . MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 2009; 326: 867–871.

    Article  CAS  Google Scholar 

  34. Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 2012; 335: 1195–1200.

    Article  CAS  Google Scholar 

  35. Odero MD, Grand FH, Iqbal S, Ross F, Roman JP, Vizmanos JL et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia 2005; 19: 245–252.

    Article  CAS  Google Scholar 

  36. Piskounova E, Polytarchou C, Thornton JE, Hagan JP, Lapierre J, Pothoulakis C et al. Oncogenic Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2012; 147: 730–748.

    Google Scholar 

  37. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  38. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  Google Scholar 

  39. Senyuk V, Zhang Y, Liu Y, Ming M, Premanand K, Zhou L et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. P Natl Acad Sci USA 2013; 110: 5594–5599.

    Article  CAS  Google Scholar 

  40. Lin X, Rice KL, Buzzai M, Hexner E, Costa FF, Kilpivaara O et al. miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia 2013; 27: 344–352.

    Article  CAS  Google Scholar 

  41. Forrest ARR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010; 24: 460–466.

    Article  CAS  Google Scholar 

  42. Mann G, Reinhardt D, Ritter J, Hermann J, Schmitt K, Gadner H et al. Treatment with all-trans retinoic acid in acute promyelocytic leukemia reduces early deaths in children. Ann Hematol 2001; 80: 417–422.

    Article  CAS  Google Scholar 

  43. Chen P, Price C, Li Z, Li Y, Cao D, Wiley A et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. P Natl Acad Sci USA 2013; 110: 11511–11516.

    Article  CAS  Google Scholar 

  44. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  Google Scholar 

  45. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN . Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 2008; 32: 276–284.

    Article  CAS  Google Scholar 

  46. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin-28. Science 2008; 320: 97–100.

    Article  CAS  Google Scholar 

  47. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10: 987–993.

    Article  CAS  Google Scholar 

  48. Newman MA, Thomson JM, Hammond SM . Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14: 1539–1549.

    Article  CAS  Google Scholar 

  49. Büssing I, Slack FJ, Grosshans H . let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008; 14: 400–409.

    Article  Google Scholar 

  50. Tessari M, Gostissa M, Altamura S, Sgarra R, Rusthigh A, Salvagno C et al. Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol 2003; 23: 9104–9116.

    Article  CAS  Google Scholar 

  51. Fedele M, Battista S, Kenyon L . Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002; 21: 3190–3198.

    Article  CAS  Google Scholar 

  52. Schoenmakers E, Wanschura S, Mols R, Bullerdiek J, Berghe H Van den, Ven WJM Van de . Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nature 1995; 10: 436–444.

    CAS  Google Scholar 

  53. Mayr C, Hemann M, Bartel D . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J Schoening for general lab support; Drs. K Weber and B Fehse for providing plasmids. SE, FE, RJ and KH were supported by the Hannover Biomedical Research School. JEK-K, LV and AAD-vO were supported by the Children Cancer Free Foundation (KIKA, project 49). JHK is a fellow of the Emmy Noether-Programme from the German Research Foundation (DFG; KL-2374/2-1). This work was supported by grants to JHK from the DFG (KL-2374/2-1) and to JEK, CMZ and MMvdH-E from KIKA (project 49).

Author contributions

SE, KH, FE, RJ, FD, and MEK performed all in vitro and in vivo experiments and analyzed data. JEK-K, LV, AAD-vO. performed expression studies and analyzed data. SE designed experiments and wrote the manuscript. KH and JEK-K wrote the manuscript. MEK revised the manuscript. JHK designed and supervised the study, analyzed data and wrote the paper. MMvdH-E designed and supervised the study and wrote the manuscript. DR, JS, AB and VdH contributed materials and clinical data and revised the manuscript. DR, CMZ, MLdB, MF and RP supervised the study and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J H Klusmann or M M van den Heuvel-Eibrink.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmrich, S., Katsman-Kuipers, J., Henke, K. et al. miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia 28, 1022–1032 (2014). https://doi.org/10.1038/leu.2013.357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.357

Keywords

This article is cited by

Search

Quick links