Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

MLL–AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny

Abstract

The MLL–AF9 fusion gene is associated with aggressive leukemias of both the myeloid and lymphoid lineage in infants, whereas in adults, this translocation is mainly associated with acute myeloid leukemia. These observations suggest that differences exist between fetal and adult tissues in terms of the ‘cell of origin’ from which the leukemia develops. Here we show that depending on extrinsic cues, human neonatal CD34+ cells are readily immortalized along either the myeloid or lymphoid lineage upon MLL–AF9 expression and give rise to mainly lymphoid leukemia in immunocompromised mice. In contrast, immortalization of adult bone marrow CD34+ cells is more difficult to achieve and is myeloid-biased, even when MLL–AF9 is expressed in purified hematopoietic stem cells (HSCs). Transcriptome analysis identified enrichment of HSC but not progenitor gene signatures in MLL–AF9-expressing cells. Although not observed in adult cells, neonatal cells expressing MLL–AF9 were enriched for gene signatures associated with poor prognosis, resistance to chemotherapeutic agents and MYC signaling. These results indicate that neonatal cells are inherently more prone to MLL–AF9-mediated immortalization than adult cells and suggest that intrinsic properties of the cell of origin, in addition to extrinsic cues, dictate lineage of the immortalized cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Ann Rev Pathol 2012; 7: 283–301.

    Article  CAS  Google Scholar 

  2. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  PubMed  Google Scholar 

  3. Eguchi M, Eguchi-Ishimae M, Greaves M . The role of the MLL gene in infant leukemia. Int J Hematol 2003; 78: 390–401.

    Article  CAS  PubMed  Google Scholar 

  4. Pui CH, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 1991; 77: 440–447.

    CAS  PubMed  Google Scholar 

  5. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML . MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003; 3: 161–171.

    Article  CAS  PubMed  Google Scholar 

  7. Cumano A, Paige CJ, Iscove NN, Brady G . Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992; 356: 612–615.

    Article  CAS  PubMed  Google Scholar 

  8. Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a “Hox Code” and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252.

    Article  CAS  PubMed  Google Scholar 

  9. Horton SJ, Walf-Vorderwulbecke V, Chatters SJ, Sebire NJ, de Boer J, Williams O . Acute myeloid leukemia induced by MLL-ENL is cured by oncogene ablation despite acquisition of complex genetic abnormalities. Blood 2009; 113: 4922–4929.

    Article  CAS  PubMed  Google Scholar 

  10. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Perales S, Cano F, Lobato MN, Rabbitts TH . MLL gene fusions in human leukaemias: in vivo modelling to recapitulate these primary tumourigenic events. Int J Hematol 2008; 87: 3–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL–AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

    Article  CAS  PubMed  Google Scholar 

  16. Rizo A, Horton SJ, Olthof S, Dontje B, Ausema A, van Os R et al. BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116: 4621–4630.

    Article  CAS  PubMed  Google Scholar 

  17. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    Article  CAS  PubMed  Google Scholar 

  18. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  19. Krivtsov AV, Feng Z, Armstrong SA . Transformation from committed progenitor to leukemia stem cells. Ann NY Acad Sci 2009; 1176: 144–149.

    Article  CAS  PubMed  Google Scholar 

  20. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  21. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  22. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY . Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008; 2: 333–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  PubMed  Google Scholar 

  24. Jaatinen T, Hemmoranta H, Hautaniemi S, Niemi J, Nicorici D, Laine J et al. Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells 2006; 24: 631–641.

    Article  CAS  PubMed  Google Scholar 

  25. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144: 296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van GP et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  27. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive complex 2 is required for MLL–AF9 leukemia. Proc Natl Acad Sci USA 2012; 109: 5028–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB . Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 2002; 100: 1302–1309.

    CAS  PubMed  Google Scholar 

  31. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2007; 1: 218–229.

    Article  CAS  PubMed  Google Scholar 

  32. Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 2012; 10: 273–283.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson JJ, Chen W, Hudson W, Yao Q, Taylor M, Rabbitts TH et al. Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood 2003; 101: 3229–3235.

    Article  CAS  PubMed  Google Scholar 

  34. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen W, O'Sullivan MG, Hudson W, Kersey J . Modeling human infant MLL leukemia in mice: leukemia from fetal liver differs from that originating in postnatal marrow. Blood 2011; 117: 3474–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ . Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 2006; 116: 2808–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Groen RW, Noort WA, Raymakers RA, Prins HJ, Aalders L, Hofhuis FM et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 2012; 120: e9–e16.

    Article  CAS  PubMed  Google Scholar 

  38. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007; 21: 2762–2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 2001; 61: 6480–6486.

    CAS  PubMed  Google Scholar 

  43. Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers MD et al. An insertional mutagenesis screen identifies genes that cooperate with MLL–AF9 in a murine leukemogenesis model. Blood 2012; 119: 4512–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A et al. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL–AF9 leukemia. Blood 2011; 118: 5235–5245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol 2008; 141: 827–839.

    Article  CAS  PubMed  Google Scholar 

  46. Kvinlaug BT, Chan WI, Bullinger L, Ramaswami M, Sears C, Foster D et al. Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias. Cancer Res 2011; 71: 4117–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee AK, Ahn SG, Yoon JH, Kim SA . Sox4 stimulates ss-catenin activity through induction of CK2. Oncol Rep 2011; 25: 559–565.

    CAS  PubMed  Google Scholar 

  48. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606–618.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the help of Dr JJ Erwich and Dr A van Loon and colleagues (Departments of Obstetrics, University Medical Center Groningen and Martini Hospital Groningen) for collecting cord blood and Dr AG Veldhuizen (Department of Orthopedic surgery, University Medical Center Groningen) for collecting BM. We would also like to thank Kirin for supplying TPO and Amgen for supplying Flt-3L and SCF. Many thanks to Henk Moes, Geert Mesander and Roelof Jan van der Lei for help with cell sorting. This work is supported by grants from Leukemia and Lymphoma Research UK (2007-07039) to SJH, NWO-VENI (2004) to JJS, NWO-VIDI (2008) to JJS, KWF (RUG 2009-4275) to JJS and EV, Interlink and AIRC to GM.

Author contributions

SJH, JJ, MM and CW performed experiments and analyzed data; EV, GH, GM and JJS analyzed and discussed data; JVD. performed transcriptome and GSEA analyses; SJH and JJS designed the experiments, analyzed and discussed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Schuringa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, S., Jaques, J., Woolthuis, C. et al. MLL–AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny. Leukemia 27, 1116–1126 (2013). https://doi.org/10.1038/leu.2012.343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.343

Keywords

This article is cited by

Search

Quick links