Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation

Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger

Abstract

Human promonocytic cell line U937 cells can be induced to differentiate into macrophages by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). TPA treatment induced the expression of the monocytic differentiation markers CD11b and CD36, with concomitant morphological changes. Moreover, TPA enhanced reactive oxygen species (ROS) generation in these cells, and phagocytic ability was also stimulated during differentiation. The antioxidant agent N-acetyl-L-cysteine inhibited the TPA-induced differentiation of U937 cells. TPA treatment decreased the expression level of catalase, which catalyzes the decomposition of hydrogen peroxide (H2O2) to H2O and O2. In contrast, TPA increased the level of manganese superoxide dismutase, which catalyzes the dismutation of superoxide into H2O2 and O2 without affecting the levels of copper-zinc superoxide dismutase or glutathione peroxidase 1, which removes H2O2 using glutathione as substrate. Treatment of U937 cells with catalase inhibited the enhancement of ROS generation induced by TPA, and blocked the TPA-induced differentiation of U937 cells. Human promyelocytic cell line HL60 cells were also induced to differentiate into macrophages by TPA. However, HP100-1 cells, its variant cell line overexpressing catalase, were resistant to TPA-induced differentiation. Our results suggest that catalase inhibits monocytic differentiation by TPA; the decrease in catalase level and the accumulation of H2O2 are significant events for monocyte/macrophage differentiation by TPA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auwerx J . The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia 1991; 47: 22–31.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–964.

    Article  CAS  PubMed  Google Scholar 

  4. Ziegler-Heitbrock HW . The biology of the monocyte system. Eur J Cell Biol 1989; 49: 1–12.

    CAS  PubMed  Google Scholar 

  5. Jawien J . New insights into immunological aspects of atherosclerosis. Pol Arch Med Wewn 2008; 118: 127–131.

    PubMed  Google Scholar 

  6. Forman HJ, Torres M . Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002; 166 (12 Part 2): S4–S8.

    Article  PubMed  Google Scholar 

  7. Babior BM . NADPH oxidase: an update. Blood 1999; 93: 1464–1476.

    CAS  PubMed  Google Scholar 

  8. Ichikawa H, Kokura S, Aw TY . Role of endothelial mitochondria in oxidant production and modulation of neutrophil adherence. J Vasc Res 2004; 41: 432–444.

    Article  CAS  PubMed  Google Scholar 

  9. Finkel T . Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 1999; 65: 337–340.

    Article  CAS  PubMed  Google Scholar 

  10. Irani K . Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 2000; 87: 179–183.

    Article  CAS  PubMed  Google Scholar 

  11. Hachiya M, Akashi M . Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2). Radiat Res 2005; 163: 271–282.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta R, Karpatkin S, Basch RS . Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 2006; 107: 1837–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 1999; 93: 2928–2935.

    CAS  PubMed  Google Scholar 

  14. Tibbles LA, Woodgett JR . The stress-activated protein kinase pathways. Cell Mol Life Sci 1999; 55: 1230–1254.

    Article  CAS  PubMed  Google Scholar 

  15. Carter AB, Tephly LA, Venkataraman S, Oberley LW, Zhang Y, Buettner GR et al. High levels of catalase and glutathione peroxidase activity dampen H2O2 signaling in human alveolar macrophages. Am J Respir Cell Mol Biol 2004; 31: 43–53.

    Article  CAS  PubMed  Google Scholar 

  16. Flaherty DM, Monick MM, Hinde SL . Human alveolar macrophages are deficient in PTEN. The role of endogenous oxidants. J Biol Chem 2006; 281: 5058–5064.

    Article  CAS  PubMed  Google Scholar 

  17. Clempus RE, Griendling KK . Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 2006; 71: 216–225.

    Article  CAS  PubMed  Google Scholar 

  18. Sauer H, Wartenberg M, Hescheler J . Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001; 11: 173–186.

    Article  CAS  PubMed  Google Scholar 

  19. Koeffler HP . Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 1983; 62: 709–721.

    CAS  PubMed  Google Scholar 

  20. Uchida T, Kanno T, Hosaka S . Direct measurement of phagosomal reactive oxygen by luminol-binding microspheres. J Immunol Methods 1985; 77: 55–61.

    Article  CAS  PubMed  Google Scholar 

  21. Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T, Akashi M . Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: mechanism for induction of radioresistance. Mol Cancer Res 2002; 1: 137–146.

    CAS  PubMed  Google Scholar 

  22. Clemens MJ . Purification of Eukaryotic mRNA. In: Hames BD, Higgins SJ (eds). Transcription and Translation. A Practical Approach. IRL Press: Oxford, 1984, pp 211–220.

    Google Scholar 

  23. Gidlund M, Orn A, Pattengale PK, Jansson M, Wigzell H, Nilsson K . Natural killer cells kill tumour cells at a given stage of differentiation. Nature 1981; 292: 848–850.

    Article  CAS  PubMed  Google Scholar 

  24. Farokhzad OC, Shelley CS, Arnaout MA . Induction of the CD11b gene during activation of the monocytic cell line U937 requires a novel nuclear factor MS-2. J Immunol 1996; 157: 5597–5605.

    CAS  PubMed  Google Scholar 

  25. Puig-Kroger A, Dominguez-Soto A, Martinez-Munoz L, Serrano-Gomez D, Lopez-Bravo M, Sierra-Filardi E et al. RUNX3 negatively regulates CD36 expression in myeloid cell lines. J Immunol 2006; 177: 2107–2114.

    Article  PubMed  Google Scholar 

  26. Febbraio M, Hajjar DP, Silverstein RL . CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108: 785–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finstad HS, Drevon CA, Kulseth MA, Synstad AV, Knudsen E, Kolset SO . Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid. Biochem J 1998; 336 (Part 2): 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alessio M, De Monte L, Scirea A, Gruarin P, Tandon NN, Sitia R . Synthesis, processing, and intracellular transport of CD36 during monocytic differentiation. J Biol Chem 1996; 271: 1770–1775.

    Article  CAS  PubMed  Google Scholar 

  29. Greenwalt DE, Lipsky RH, Ockenhouse CF, Ikeda H, Tandon NN, Jamieson GA . Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 1992; 80: 1105–1115.

    CAS  PubMed  Google Scholar 

  30. Stendahl O, Dahlgren C, Hed J . Physicochemical and functional changes in human leukemic cell line HL-60. J Cell Physiol 1982; 112: 217–221.

    Article  CAS  PubMed  Google Scholar 

  31. Rovera G, Santoli D, Damsky C . Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 1979; 76: 2779–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schreck R, Baeuerle PA . A role for oxygen radicals as second messengers. Trends Cell Biol 1991; 1: 39–42.

    Article  CAS  PubMed  Google Scholar 

  33. Hass R, Hirano M, Kharbanda S, Rubin E, Meinhardt G, Kufe D . Resistance to phorbol ester-induced differentiation of a U-937 myeloid leukemia cell variant with a signaling defect upstream to Raf-1 kinase. Cell Growth Differ 1993; 4: 657–663.

    CAS  PubMed  Google Scholar 

  34. Macfarlane DE, Manzel L . Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 1994; 269: 4327–4331.

    CAS  PubMed  Google Scholar 

  35. Tonetti DA, Henning-Chubb C, Yamanishi DT, Huberman E . Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem 1994; 269: 23230–23235.

    CAS  PubMed  Google Scholar 

  36. Yang KD, Mizobuchi T, Kharbanda SM, Datta R, Huberman E, Kufe DW et al. All-trans retinoic acid reverses phorbol ester resistance in a human myeloid leukemia cell line. Blood 1994; 83: 490–496.

    CAS  PubMed  Google Scholar 

  37. Barbieri SS, Eligini S, Brambilla M, Tremoli E, Colli S . Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical role of NADPH oxidase. Cardiovasc Res 2003; 60: 187–197.

    Article  CAS  PubMed  Google Scholar 

  38. Kikuchi H, Fujinawa T, Kuribayashi F, Nakanishi A, Imajoh-Ohmi S, Goto M et al. Induction of essential components of the superoxide generating system in human monoblastic leukemia U937 cells. J Biochem 1994; 116: 742–746.

    Article  CAS  PubMed  Google Scholar 

  39. Levy R, Rotrosen D, Nagauker O, Leto TL, Malech HL . Induction of the respiratory burst in HL-60 cells. Correlation of function and protein expression. J Immunol 1990; 145: 2595–2601.

    CAS  PubMed  Google Scholar 

  40. Yang KD, Shaio MF . Hydroxyl radicals as an early signal involved in phorbol ester-induced monocytic differentiation of HL60 cells. Biochem Biophys Res Commun 1994; 200: 1650–1657.

    Article  CAS  PubMed  Google Scholar 

  41. Datta R, Yoshinaga K, Kaneki M, Pandey P, Kufe D . Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta -dependent and required for SAPK activation. J Biol Chem 2000; 275: 41000–41003.

    Article  CAS  PubMed  Google Scholar 

  42. Traore K, Trush MA, George Jr M, Spannhake EW, Anderson W, Asseffa A . Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. Leuk Res 2005; 29: 863–879.

    Article  CAS  PubMed  Google Scholar 

  43. Andrew PW, Robertson AK, Lowrie DB, Cross AR, Jones OT . Induction of synthesis of components of the hydrogen peroxide-generating oxidase during activation of the human monocytic cell line U937 by interferon-gamma. Biochem J 1987; 248: 281–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Capeillere-Blandin C, Masson A, Descamps-Latscha B . Molecular characteristics of cytochrome b558 isolated from human granulocytes, monocytes and HL60 and U937 cells differentiated into monocyte/macrophages. Biochim Biophys Acta 1991; 1094: 55–65.

    Article  CAS  PubMed  Google Scholar 

  45. Newburger PE, Ezekowitz RA, Whitney C, Wright J, Orkin SH . Induction of phagocyte cytochrome b heavy chain gene expression by interferon gamma. Proc Natl Acad Sci USA 1988; 85: 5215–5219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Speier C, Newburger PE . Changes in superoxide dismutase, catalase, and the glutathione cycle during induced myeloid differentiation. Arch Biochem Biophys 1986; 251: 551–557.

    Article  CAS  PubMed  Google Scholar 

  47. Auwerx JH, Chait A, Wolfbauer G, Deeb SS . Loss of copper-zinc superoxide dismutase gene expression in differentiated cells of myelo-monocytic origin. Blood 1989; 74: 1807–1810.

    CAS  PubMed  Google Scholar 

  48. Oberley LW, Ridnour LA, Sierra-Rivera E, Oberley TD, Guernsey DL . Superoxide dismutase activities of differentiating clones from an immortal cell line. J Cell Physiol 1989; 138: 50–60.

    Article  CAS  PubMed  Google Scholar 

  49. Kang HK, Suh JH, Lee JJ, Yoon SH, Hyun JW, Choi SW et al. Induction of the differentiation of HL-60 promyelocytic leukemia cells by L-ascorbic acid. Free Radic Res 2003; 37: 773–779.

    Article  CAS  PubMed  Google Scholar 

  50. Nakagawara A, Nathan CF, Cohn ZA . Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 1981; 68: 1243–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasugai I, Yamada M . Adaptation of human leukemia HL-60 cells to hydrogen peroxide as oxidative stress. Leuk Res 1989; 13: 757–762.

    Article  CAS  PubMed  Google Scholar 

  52. Preston TJ, Muller WJ, Singh G . Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. J Biol Chem 2001; 276: 9558–9564.

    Article  CAS  PubMed  Google Scholar 

  53. Gutteridge J, Halliwell B . Free Radicals in Biology and Medicine. Clarendon Press: Oxford, 1999.

    Google Scholar 

  54. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T . Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–299.

    Article  CAS  PubMed  Google Scholar 

  55. Nishihira J, Ishibashi T, Takeichi N, Sakamoto W, Nakamura M . A role for oxygen radicals in rat monocytic leukemia cell differentiation under stimulation with platelet-activating factor. Biochim Biophys Acta 1994; 1220: 286–290.

    Article  CAS  PubMed  Google Scholar 

  56. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005; 106: 852–859.

    Article  CAS  PubMed  Google Scholar 

  57. Danilenko M, Wang Q, Wang X, Levy J, Sharoni Y, Studzinski GP . Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res 2003; 63: 1325–1332.

    CAS  PubMed  Google Scholar 

  58. Esposito F, Agosti V, Morrone G, Morra F, Cuomo C, Russo T et al. Inhibition of the differentiation of human myeloid cell lines by redox changes induced through glutathione depletion. Biochem J 1994; 301 (Part 3): 649–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Q, Salman H, Danilenko M, Studzinski GP . Cooperation between antioxidants and 1,25-dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP-1/Egr-1 pathway. J Cell Physiol 2005; 204: 964–974.

    Article  CAS  PubMed  Google Scholar 

  60. Nenoi M, Ichimura S, Mita K, Yukawa O, Cartwright IL . Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res 2001; 61: 5885–5894.

    CAS  PubMed  Google Scholar 

  61. Kharbanda S, Nakamura T, Stone R, Hass R, Bernstein S, Datta R et al. Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest 1991; 88: 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen HQ, Hoffman-Liebermann B, Liebermann DA . The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 1993; 72: 197–209.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a special grant for Radiation Emergency Medicine from the Ministry of Education, Culture, Sports, Science and Technology. We thank Ms Aki Yamamoto for her excellent secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Akashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Sakaguchi, N., Hachiya, M. et al. Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger. Leukemia 23, 761–769 (2009). https://doi.org/10.1038/leu.2008.353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.353

Keywords

This article is cited by

Search

Quick links