Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Measles virus causes immunogenic cell death in human melanoma

Abstract

Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host antitumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97: 3746–3754.

    Article  CAS  PubMed  Google Scholar 

  2. Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001; 98: 2002–2007.

    Article  CAS  PubMed  Google Scholar 

  3. Peng K-W, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62: 4656–4662.

    CAS  PubMed  Google Scholar 

  4. Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003; 63: 2462–2469.

    CAS  PubMed  Google Scholar 

  5. Peng K-W, Frenzke M, Myers R, Soeffker D, Harvey M, Greiner S et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther 2003; 14: 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  6. Dingli D, Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  7. Langfield KK, Wegman TR, Walker HJ, Griesmann GE, Sauer JA, Stephan SA et al. 77. Production and purification of measles virus for oncolytic virotherapy clinical trials. Mol Ther 2004; 9: S31.

    Google Scholar 

  8. Kunzi V, Oberholzer PA, Heinzerling L, Dummer R, Naim HY . Recombinant measles virus induces cytolysis of cutaneous T-cell lymphoma in vitro and in vivo. J Invest Dermatol 2006; 126: 2525–2532.

    Article  PubMed  Google Scholar 

  9. Hasegawa K, Pham L, O’Connor MK, Federspiel MJ, Russell SJ, Peng KW et al. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 2006; 12: 1868–1875.

    Article  CAS  PubMed  Google Scholar 

  10. Blechacz B, Splinter PL, Greiner S, Myers R, Peng KW, Federspiel MJ et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 2006; 44: 1465–1477.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmermann M, Armeanu S, Smirnow I, Kupka S, Wagner S, Wehrmann M et al. Human precision-cut liver tumor slices as a tumor patient-individual predictive test system for oncolytic measles vaccine viruses. Int J Oncol 2009; 34: 1247–1256.

    CAS  PubMed  Google Scholar 

  12. Penheiter AR, Wegman TR, Classic KL, Dingli D, Bender CE, Russell SJ et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. Am J Roentgenol 2010; 195: 341–349.

    Article  Google Scholar 

  13. Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H, Dummer R et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005; 106: 2287–2294.

    Article  CAS  PubMed  Google Scholar 

  14. Msaouel P, Dispenzieri A, Galanis E . Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 2009; 11: 43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 2010; 17: 718–730.

    Article  PubMed  Google Scholar 

  16. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009; 27: 5763–5771.

    Article  CAS  PubMed  Google Scholar 

  17. O’Day S, Hodi FS, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. A phase III, randomized, double-blind, multicenter study comparing monotherapy with ipilimumab or gp100 peptide vaccine and the combination in patients with previously treated, unresectable stage III or IV melanoma. J Clin Oncol 2010; 28: 4.

    Article  Google Scholar 

  18. Gauvrit A, Brandler S, Sapede-Peroz C, Boisgerault N, Tangy F, Gregoire M et al. Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res 2008; 68: 4882–4892.

    Article  CAS  PubMed  Google Scholar 

  19. Kemper C, Atkinson JP . Measles virus and CD46. Curr Top Microbiol Immunol 2009; 329: 31–57.

    CAS  PubMed  Google Scholar 

  20. Anderson BD, Nakamura T, Russell SJ, Peng K-WHighCD46 . Receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 2004; 64: 4919–4926.

    Article  CAS  PubMed  Google Scholar 

  21. Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, Vile R et al. Recent clinical experience with oncolytic viruses. Curr Pharm Biotechnol 2011, e-pub ahead of print 8 July 2011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21740364. ISN 1873-4316.

  22. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther 2009; 20: 1119–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wongthida P, Diaz RM, Galivo F, Kottke T, Thompson J, Melcher A et al. VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther 2011; 19: 150–158.

    Article  CAS  PubMed  Google Scholar 

  25. Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T et al. Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res 2009; 15: 4374–4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Errington F, Steele L, Prestwich R, Harrington KJ, Pandha HS, Vidal L et al. Reovirus activates human dendritic cells to promote innate antitumor immunity. J Immunol 2008; 180: 6018–6026.

    Article  CAS  PubMed  Google Scholar 

  27. Prestwich RJ, Errington F, Ilett EJ, Morgan RS, Scott KJ, Kottke T et al. Tumor Infection by oncolytic reovirus primes adaptive antitumor immunity. Clin Cancer Res 2008; 14: 7358–7366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reed LJ, Muench H . A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27: 493.

    Article  Google Scholar 

  29. Lee GY, Kenny PA, Lee EH, Bissell MJ . Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Meth 2007; 4: 359–365.

    Article  CAS  Google Scholar 

  30. Evans CJ, Phillips RM, Jones PF, Loadman PM, Sleeman BD, Twelves CJ et al. A mathematical model of doxorubicin penetration through multicellular layers. J Theor Biol 2009; 257: 598–608.

    Article  CAS  PubMed  Google Scholar 

  31. Errington F, White CL, Twigger KR, Rose A, Scott K, Steele L et al. Inflammatory tumour cell killing by oncolytic reovirus for the treatment of melanoma. Gene Therapy 2008; 15: 1257–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubo H, Ashida A, Matsumoto K, Kageshita T, Yamamoto A, Saida T et al. Interferon-â therapy for malignant melanoma: the dose is crucial for inhibition of proliferation and induction of apoptosis of melanoma cells. Arch Dermatol Res 2008; 300: 297–301.

    Article  CAS  PubMed  Google Scholar 

  33. Kawai T, Akira S . Innate immune recognition of viral infection. Nat Immunol 2006; 7: 131–137.

    Article  CAS  PubMed  Google Scholar 

  34. Pichlmair A, Sousa CRE . Innate Recognition of Viruses. Immunity 2007; 27: 370–383.

    Article  CAS  PubMed  Google Scholar 

  35. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  36. Huang B, Sikorski R, Kirn DH, Thorne SH . Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Therapy 2011; 18: 164–172.

    Article  CAS  PubMed  Google Scholar 

  37. Prestwich RJ, Errington F, Steele LP, Ilett EJ, Morgan RS, Harrington KJ et al. Reciprocal human dendritic cell–natural killer cell interactions induce antitumor activity following tumor cell infection by oncolytic reovirus. J Immunol 2009; 183: 4312–4321.

    Article  CAS  PubMed  Google Scholar 

  38. White CL, Twigger KR, Vidal L, De Bono JS, Coffey M, Heinemann L et al. Characterization of the adaptive and innate immune response to intravenous oncolytic reovirus (Dearing type 3) during a phase I clinical trial. Gene Therapy 2008; 15: 911–920.

    Article  CAS  PubMed  Google Scholar 

  39. Ohgimoto K, Ohgimoto S, Ihara T, Mizuta H, Ishido S, Ayata M et al. Difference in production of infectious wild-type measles and vaccine viruses in monocyte-derived dendritic cells. Virus Res 2007; 123: 1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Schneider-Schaulies S, Schneider-Schaulies J . Measles virus-induced immunosuppression. Curr Top Microbiol Immunol 2009; 330: 243–269.

    CAS  PubMed  Google Scholar 

  41. Yang L, Carbone DP . Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 2004; 92: 13–27.

    Article  CAS  PubMed  Google Scholar 

  42. Steele L, Errington F, Prestwich R, Ilett E, Harrington K, Pandha H et al. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NFkB mediated and supports innate and adaptive anti-tumour immune priming. Mol Cancer 2011; 10: 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galivo F, Diaz RM, Wongthida P, Thompson J, Kottke T, Barber G et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Therapy 2009; 17: 158–170.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu C, Hasegawa K, Russell SJ, Sadelain M, Peng K-W . Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate 2009; 69: 1128–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Msaouel P, Iankov ID, Allen C, Aderca I, Federspiel MJ, Tindall DJ et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther 2009; 17: 2041–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iankov ID, Msaouel P, Allen C, Federspiel MJ, Bulur PA, Dietz AB et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat 2010; 122: 745–754.

    Article  PubMed  Google Scholar 

  47. Myers R, Harvey M, Kaufmann TJ, Greiner SM, Krempski JW, Raffel C et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther 2008; 19: 690–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dingli D, Offord C, Myers R, Peng KW, Carr TW, Josic K et al. Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer Gene Ther 2009; 16: 873–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haralambieva I, Iankov I, Hasegawa K, Harvey M, Russell SJ, Peng KW et al. Engineering oncolytic measles virus to circumvent the intracellular innate immune response. Mol Ther 2007; 15: 588–597.

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Peng K-W, Dingli D, Kratzke RA, Russell SJ . Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther 2010; 17: 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL et al. Impaired interferon signaling is a common immune defect in human cancer. Pro Nat Acad Sci 2009; 106: 9010–9015.

    Article  CAS  Google Scholar 

  52. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  53. Willmon CL, Saloura V, Fridlender ZG, Wongthida P, Diaz RM, Thompson J et al. Expression of IFN-{beta} enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Res 2009; 69: 7713–7720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mocellin S, Pasquali S, Rossi CR, Nitti D . Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2010; 102: 493–501.

    Article  CAS  PubMed  Google Scholar 

  55. Iwasaki A, Medzhitov R . Toll-like receptor control of the adaptive immune responses. Nature immunol 2004; 5: 987–995.

    Article  CAS  Google Scholar 

  56. Scaffidi P, Misteli T, Bianchi ME . Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195.

    Article  CAS  PubMed  Google Scholar 

  57. Bianchi ME, Manfredi AA . High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220: 35–46.

    Article  CAS  PubMed  Google Scholar 

  58. Lotze MT, Tracey KJ . High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331–342.

    Article  CAS  PubMed  Google Scholar 

  59. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A . HMGB1: endogenous danger signaling. Mol Med 2008; 14: 476–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wongthida P, Diaz RM, Galivo F, Kottke T, Thompson J, Pulido J et al. Type III IFN Interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer. Cancer Res 2010; 70: 4539–4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banaszynski LA, Sellmyer MA, Contag CH, Wandless TJ, Thorne SH . Chemical control of protein stability and function in living mice. Nat Med 2008; 14: 1123–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Parker WB, Sorscher EJ et al. An immunocompetent murine model for oncolysis with an armed and targeted measles virus. Mol Ther 2007; 15: 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenberg SA, Dudley ME . Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009; 21: 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK . Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 1999; 73: 9568–9575.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C et al. Rescue of measles viruses from cloned DNA. EMBO J 1995; 14: 5773–5784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Errington F, Jones J, Merrick A, Bateman A, Harrington K, Gough M et al. Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming. Gene Therapy 2006; 13: 138–149.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described was supported by grants from the Medical Research Council (UK) and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Melcher.

Ethics declarations

Competing interests

Stephen J Russell is a named inventor on patents pertaining to the use of MV as an anticancer drug therapy. These patents are owned by Mayo Clinic. The authors otherwise declare no competing interests in relation to the work described.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, O., Errington-Mais, F., Steele, L. et al. Measles virus causes immunogenic cell death in human melanoma. Gene Ther 20, 7–15 (2013). https://doi.org/10.1038/gt.2011.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.205

Keywords

This article is cited by

Search

Quick links