Abstract
The tissues of hepatocellular carcinoma were operatively resected from six patients. All four components of the systems of microsomal cytochrome P-450-linked monooxygenase of the tissues were investigated and compared to those of normal liver tissue. The concentrations of cytochromes P-450, P-420 and b5 were measured optically and the concentrations of all components except cytochrome P-450 were measured by the Western blotting method followed by immunochemical staining. In microsomes of hepatocellular carcinoma tissues, there was as much cytochrome P-450 and other redox components as in the normal liver tissues, but cytochrome P-450 in liver cancer tissues was unstable and easily converted to cytochrome P-420. The specific activities of NADPH- and NADH-ferricyanide and cytochrome c reductase of each sample were also measured. In the microsomes of the cancer tissues, the specific activities were remarkably reduced compared with those of normal liver tissues. The lipid compositions of the microsomes and the phospholipid/cholesterol ratios (w/w) were 13.1 +/- 3.13 in the cancer tissues and 43.0 +/- 6.74 in normal liver tissues. This difference of the lipid composition elucidates the instability of cytochrome P-450 molecules and the inefficiency of the electron transport of cytochrome P-450-linked monooxygenase systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 24 print issues and online access
$259.00 per year
only $10.79 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hamamoto, I., Tanaka, S., Maeba, T. et al. Microsomal cytochrome P-450-linked monooxygenase systems and lipid composition of human hepatocellular carcinoma. Br J Cancer 59, 6–11 (1989). https://doi.org/10.1038/bjc.1989.3
Issue Date:
DOI: https://doi.org/10.1038/bjc.1989.3