Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis

Abstract

Amphiphysin, a protein that is highly concentrated in nerve terminals, has been proposed to function as a linker between the clathrin coat and dynamin in the endocytosis of synaptic vesicles. Here, using a cell-free system, we provide direct morphological evidence in support of this hypothesis. Unexpectedly, we also find that amphiphysin-1, like dynamin-1, can transform spherical liposomes into narrow tubules. Moreover, amphiphysin-1 assembles with dynamin-1 into ring-like structures around the tubules and enhances the liposome-fragmenting activity of dynamin-1 in the presence of GTP. These results show that amphiphysin binds lipid bilayers, indicate a potential function for amphiphysin in the changes in bilayer curvature that accompany vesicle budding, and imply a close functional partnership between amphiphysin and dynamin in endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of amphiphysin-1 on the coupling between clathrin-coated budding and dynamin-mediated tubulation in protein-free liposomes composed of a brain lipid extract.
Figure 2: Amphiphysin alone tubulates liposomes composed of a brain lipid extract.
Figure 3: Amphiphysin-1 and dynamin-1 co-assemble into a hybrid coat.
Figure 4: Dynamin-1 and amphiphysin-1 co-polymerize into rings in a buffer of physiological ionic strength and pH.
Figure 5: GTP-dependent liposome fragmentation produced by dynamin-1 alone or by amphiphysin-1 and dynamin-1 together.
Figure 6: Effect of amphiphysin-1 on the recruitment of dynamin-1 to liposomes and on its GTPase activity.
Figure 7: Interactions of the amphiphysin dimer at a clathrin-coated endocytotic pit.

Similar content being viewed by others

References

  1. Mundigl, O. et al. Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J. Neurosci. 18, 93–103 (1998).

    Article  CAS  Google Scholar 

  2. David, C., McPherson, P. S., Mundigl, O. & De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl Acad. Sci. USA 93, 331–335 (1996).

    Article  CAS  Google Scholar 

  3. Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & Camilli, P.D. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    Article  CAS  Google Scholar 

  4. Wigge, P. & McMahon, H. T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339–344 (1998).

    Article  CAS  Google Scholar 

  5. Cremona, O. & De Camilli, P. Synaptic vesicle endocytosis . Curr. Opin. Neurobiol. 7, 323– 330 (1997).

    Article  CAS  Google Scholar 

  6. Butler, M. H. et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J. Cell Biol. 137, 1355–1367 (1997).

    Article  CAS  Google Scholar 

  7. Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem. 272 , 15101–15105 (1997).

    Article  CAS  Google Scholar 

  8. Ramjaun, A. R., Micheva, K. D., Bouchelet, I. & McPherson, P. S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700– 16706 (1997).

    Article  CAS  Google Scholar 

  9. Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003– 2015 (1997).

    Article  CAS  Google Scholar 

  10. Wang, L. H., Südhof, T. C. & Anderson, R. G. W. The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. J. Biol. Chem. 270, 10079– 10083 (1995).

    Article  CAS  Google Scholar 

  11. McMahon, H. T., Wigge, P. & Smith, C. Clathrin interacts specifically with amphiphysin and is displaced by dynamin. FEBS Lett. 413, 319 –322 (1997).

    Article  CAS  Google Scholar 

  12. Ramjaun, A. R. & McPherson, P. S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J. Neurochem. 70, 2369–2376 (1998).

    Article  CAS  Google Scholar 

  13. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  Google Scholar 

  14. Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence . J. Biol. Chem. 272, 13419– 13425 (1997).

    Article  CAS  Google Scholar 

  15. De Camilli, P. & Takei, K. Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron 16, 481–486 (1996).

    Article  CAS  Google Scholar 

  16. Urrutia, R., Henley, J. R., Cook, T. & McNiven, M. A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl Acad. Sci. USA 94, 377–384 (1997).

    Article  CAS  Google Scholar 

  17. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259– 263 (1997).

    Article  CAS  Google Scholar 

  18. Wigge, P., Vallis, Y. & McMahon, H. T. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr. Biol. 7, 554 –560 (1997).

    Article  CAS  Google Scholar 

  19. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131– 141 (1998).

    Article  CAS  Google Scholar 

  20. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  Google Scholar 

  21. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1019 ( 1998).

    Article  CAS  Google Scholar 

  22. Hao, W. et al. Regulation of AP-3 function by inositides. J. Biol. Chem . 272, 6393–6398 ( 1997).

    Article  CAS  Google Scholar 

  23. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21 , 1465–1475 (1998).

    Article  CAS  Google Scholar 

  24. David, C., Solimena, M. & De Camilli, P. Autoimmunity in Stiff-Man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Lett. 351, 73–79 (1994).

    Article  CAS  Google Scholar 

  25. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTPγS in nerve terminals. Nature 374, 186– 190 (1995).

    Article  CAS  Google Scholar 

  26. Bauerfeind, R., Takei, K. & De Camilli, P. Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 272, 30984–30992 (1997).

    Article  CAS  Google Scholar 

  27. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 ( 1995).

    Article  CAS  Google Scholar 

  28. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process . Annu. Rev. Biochem. 66, 511– 548 (1997).

    Article  CAS  Google Scholar 

  29. Gaidarov, I., Krupnick, J. G., Falck, J. R., Benovic, J. L. & Keen, J. H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 ( 1999).

    Article  CAS  Google Scholar 

  30. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101– 114 (1998).

    Article  CAS  Google Scholar 

  31. Henley, J., Krueger, E., Oswald, B. & McNiven, M. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    Article  CAS  Google Scholar 

  32. Polyakov, A., Severinova, E. & Darst, S. A. Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformation of the enzyme. Cell 83, 365–373 ( 1995).

    Article  CAS  Google Scholar 

  33. Wilson-Kubalek, E. M., Brown, R. E., Celia, H. & Milligan, R. A. Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc. Natl Acad. Sci. USA 95, 8040–8045 (1998).

    Article  CAS  Google Scholar 

  34. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272, 28030– 28035 (1997).

    Article  CAS  Google Scholar 

  35. Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844 –3860 (1989).

    Article  CAS  Google Scholar 

  36. Floyd, S. et al. Expression of amphiphysin I, an autoantigen of paraneoplastic neurological syndromes, in breast cancer. Mol. Med. 4, 29–39 (1998).

    Article  CAS  Google Scholar 

  37. Slot, J. W. & Geuze, H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93 ( 1985).

    CAS  PubMed  Google Scholar 

  38. Reeves, J. P. & Dowben, R. M. Formation and properties of thin-walled phospholipid vesicles. J. Cell Physiol. 73, 49–60 (1969).

    Article  CAS  Google Scholar 

  39. Campbell, C., Squicciarini, J., Shia, M., Pilch, P. F. & Fine, R. E. Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry 23, 4420–4426 ( 1984).

    Article  CAS  Google Scholar 

  40. Keen, J. H., Willingham, M. C. & Pastan, I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

  41. Takei, K., Mundigl, O., Daniell, L. & De Camilli, P. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin . J. Cell Biol. 133, 1237– 1250 (1996).

    Article  CAS  Google Scholar 

  42. Liu, J. P., Zhang, Q. X., Baldwin, G. & Robinson, P. J. Calcium binds dynamin I and inhibits its GTPase activity. J. Neurochem. 66, 2074–2081 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH and the US Army Medical Research and Development Command (to P.D.C.), and a long-term fellowship from the Human Frontier Science Program (to V.H.).

Correspondence and requests for materials should be addressed to P.D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Camilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takei, K., Slepnev, V., Haucke, V. et al. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1, 33–39 (1999). https://doi.org/10.1038/9004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing