Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased production of IL-7 accompanies HIV-1–mediated T-cell depletion: implications for T-cell homeostasis

Abstract

We hypothesized that HIV-1–mediated T-cell loss might induce the production of factors that are capable of stimulating lymphocyte development and expansion. Here we perform cross-sectional (n = 168) and longitudinal (n = 11) analyses showing that increased circulating levels of interleukin (IL)-7 are strongly associated with CD4+ T lymphopenia in HIV-1 disease. Using immunohistochemistry with quantitative image analysis, we demonstrate that IL-7 is produced by dendritic-like cells within peripheral lymphoid tissues and that IL-7 production by these cells is greatly increased in lymphocyte-depleted tissues. We propose that IL-7 production increases as part of a homeostatic response to T-cell depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in IL-7, CD4+ T cell count, and viral load over the course of HIV-1 disease progression.
Figure 2: Longitudinal analysis showing changes in 11 subjects followed for 6–25 mo.
Figure 3: Production of IL-7 within peripheral lymphoid tissue.

Similar content being viewed by others

References

  1. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nature Med. 5, 83–89 (1999).

    Article  CAS  Google Scholar 

  2. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  3. McCune, J.M. et al. High prevalence of thymic tissue in adults with HIV-1 infection. J. Clin. Invest. 101, 2301–2308 (1998).

    Article  CAS  Google Scholar 

  4. Douek, D.C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  Google Scholar 

  5. Poulin, J.-F. et al. Direct evidence for thymic function in adult humans. J. Exp. Med. 190, 479–486 (1999).

    Article  CAS  Google Scholar 

  6. Zhang, L. et al. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J. Exp. Med. 190, 725–732 (1999).

    Article  CAS  Google Scholar 

  7. Haynes, B.F. et al. Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection. J. Clin. Invest. 103, 453–460 (1999).

    Article  CAS  Google Scholar 

  8. Silva, M. et al. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88, 1576–1582 (1996).

    CAS  PubMed  Google Scholar 

  9. Kato, T. et al. Native thrombopoietin: structure and function. Stem Cells 16, 322–328 (1998).

    Article  CAS  Google Scholar 

  10. Lyman, S. & Jacobsen, S.E.W. c-Kit ligand and Flt-3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101–1134 (1998).

    CAS  PubMed  Google Scholar 

  11. Kelley, K.W. et al. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc. Natl. Acad. Sci. USA 83, 5663–5667 (1986).

    Article  CAS  Google Scholar 

  12. Bar-Dayan, Y. & Small, M. Effect of bovine growth hormone administration on the pattern of thymic involution in mice. Thymus 23, 95–101 (1994).

    CAS  PubMed  Google Scholar 

  13. Beschorner, W.E. et al. Enhancement of thymic recovery after cyclosporine by recombinant human growth hormone and insulin-like growth factor I. Transplantation 52, 879–884 (1991).

    Article  CAS  Google Scholar 

  14. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin-7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  15. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  Google Scholar 

  16. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    Article  CAS  Google Scholar 

  17. Di Santo, J. et al. The common cytokine receptor γ chain and the pre-T-cell receptor provide independent but critically overlapping signals in early α/β T-cell development. J. Exp. Med. 189, 563–573 (1999).

    Article  CAS  Google Scholar 

  18. Pallard, C. et al. Distinct roles of the phosophatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    Article  CAS  Google Scholar 

  19. Grzegorzewski, K.J. et al. Mobilization of long-term reconstituting hematopoietic stem cells in mice by recombinant human interleukin 7. J. Exp. Med. 181, 369–374 (1995).

    Article  CAS  Google Scholar 

  20. Morrissey, P.J. et al. Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates lymphocyte repopulation. J. Immunol. 146, 1547–1552 (1991).

    CAS  PubMed  Google Scholar 

  21. Bolotin, E., Smogorzewska, M., Smith, S., Widmer, M. & Weinberg, K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 88, 1887–1894 (1996).

    CAS  PubMed  Google Scholar 

  22. Chazen, G.D., Pereira, G.M., LeGros, G., Gillis, S. & Shevach, E.M. IL-7 is a T-cell growth factor. Proc. Nat. Acad. Sci. USA 86, 5923–5927 (1989).

    Article  CAS  Google Scholar 

  23. Hickman, C.J., Crim, J.A., Mostowski, H.S. & Siegel, J.P. Regulation of human cytotoxic T lymphocyte development by IL-7. J. Immunol. 145, 2415–2420 (1990).

    CAS  PubMed  Google Scholar 

  24. Smithgall, M.D., Wong, J.G.P., Critchett, K.E. & Haffar, O.K. IL-7 up-regulates HIV-1 replication in naturally infected peripheral blood mononuclear cells. J. Immunol. 156, 2324–2330 (1996).

    CAS  PubMed  Google Scholar 

  25. Chene, L. et al. Thymocyte-thymic epithelial cell interaction leads to high-level replication of human immunodeficiency virus exclusively in mature CD4+ CD8– CD3+ thymocytes: a critical role for tumor necrosis factor and interleukin-7. J. Virol. 73, 7533–7542 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersson, J. et al. Early reduction of immune activation in lymphoid tissue following highly active HIV therapy. AIDS 12, 123–129 (1998).

    Article  Google Scholar 

  27. Mackall, C.L., Hakim, F.T. & Gress, R.E. Restoration of T-cell homeostasis after T-cell depletion. Semin. Immunol. 9, 339–346 (1997).

    Article  CAS  Google Scholar 

  28. Tanchot, C., Rosado, M.M., Agenes, F., Frietas, A.A. & Rocha, B. Lymphocyte homeostasis. Semin. Immunol. 9, 331–337 (1997).

    Article  CAS  Google Scholar 

  29. Goldrath, A. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  30. Berzins, S.P., Boyd, R.L. & Miller, J.F.A.P. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1339–1348 (1998).

    Article  Google Scholar 

  31. Gabor, M.J., Scollay, R. & Godfrey, D.I. Thymic T cell export is not influenced by the peripheral T cell pool. Eur. J. Immunol. 27, 2986–2993 (1997).

    Article  CAS  Google Scholar 

  32. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. Defective IL7R expression in T (–) B (+) NK (+) severe combined immunodeficiency. Nature Genet. 20, 394–397 (1998).

    Article  CAS  Google Scholar 

  33. Bolotin, E., Annett, G., Parkman, R. & Weinberg, K. Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant. 23, 783–788 (1999).

    Article  CAS  Google Scholar 

  34. Ryan, D.H. & Tang, J. Regulation of human B cell lymphopoiesis by adhesion molecules and cytokines. Leuk. Lymphoma 17, 375–389 (1995).

    Article  CAS  Google Scholar 

  35. Tang, J. et al. TGF-beta down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol. 159, 117–125 (1997).

    CAS  PubMed  Google Scholar 

  36. Komschlies, K., Grzegorzewski, K. & Wiltrout, R.H. Diverse immunological and hematological effects of interleukin 7: implications for clinical application. J. Leukoc. Biol 58, 623–633 (1995).

    Article  CAS  Google Scholar 

  37. Kroncke, R., Loppnow, H., Flad, H.D. & Gerdes, J. Human follicular dendritic cells and vascular cells produce interleukin-7: a potential role for interleukin-7 in the germinal center reaction. Eur. J. Immunol. 26, 2541–2544 (1996).

    Article  CAS  Google Scholar 

  38. Watanabe, M. et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J. Clin. Invest. 95, 2945–2953 (1995).

    Article  CAS  Google Scholar 

  39. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  40. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science. 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  41. McCune, J.M. Thymic function in HIV-1 disease. Semin. Immunol. 9, 397–404 (1997).

    Article  CAS  Google Scholar 

  42. Haase, A.T. Population biology of HIV-1 infection: Viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656 (1999).

    Article  CAS  Google Scholar 

  43. Mellors, J.W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170 (1996).

    Article  CAS  Google Scholar 

  44. Elbeik, T. et al. Quantitative and cost comparison of ultrasensitive human immunodeficiency virus type 1 RNA viral load assays: Bayer bDNA Quantiflex versions 3.0 and 2.0 and Roach PCR Amplicor Monitor version 1.5 J Clin Microbiol 38, 1113–1120(2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Litton, M. et al. Tumor therapy with antibody targeted superantigens generates a dichotomy between local and systemic immune responses. Am. J. Pathol. 150, 1607–1618 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bjork, L., Fehniger, T., Andersson, U., Andersson, J. Computerized assessment of production of multiple human cytokines at the single cell level using image analysis. J. Leukoc. Biol. 59, 287–295 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the study participants, Project Inform and other AIDS community members for support; L. Radler, R. Halvorsen, R. Loftus, S. Lee, M. Weinstein, M.B. Hanley and K. Bastani for technical contributions; N. Abbey, B. Hoh, E. Duecy, M. Thounaojam, P. Wong and J. Javier for assistance; T. Fry and C. Mackall for unpublished observations; and B. Bredt and other members of the UCSF/Macy's Center for Creative Therapies and the Core Immunology Laboratory, as well as the San Francisco General Hospital General Clinical Research Center, for specimen processing and analysis. L.A.N and R.M.G were supported by the J. David Gladstone Institutes. L.A.N was supported by the NIH (AI01597). S.C.D. was supported by the University of California University-wide AIDS Research Program (F97-ST-044) and the NIH (CA42059). R.M.G and B.H. were supported by the UCSF Center for AIDS Research (P30 MH59037) and B.H. was also supported by the NIH (CA66529). J.A. was supported by grants from the Medical Research Council (10850) and by the NIH (AI41536). J.M.M. was supported by the Elizabeth Glaser Pediatric AIDS Foundation and by grants from the NIH (AI43864, AI47062, and AI40312) . The SFGH GCRC was supported by an NIH Grant from the Division of Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. McCune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, L., Grant, R., Deeks, S. et al. Increased production of IL-7 accompanies HIV-1–mediated T-cell depletion: implications for T-cell homeostasis. Nat Med 7, 73–79 (2001). https://doi.org/10.1038/83381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing