Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replicative adenoviruses for cancer therapy

Abstract

Rapid advances are being made in the engineering of replication-competent viruses to treat cancer. Adenovirus is a mildly pathogenic human virus that propagates prolifically in epithelial cells, the origin of most human cancers. While virologists have revealed many details about its molecular interactions with the cell, applied scientists have developed powerful technologies to genetically modify or regulate every viral protein. In tandem, the limited success of nonreplicative adenoviral vectors in cancer gene therapy has brought the old concept of adenovirus oncolysis back into the spotlight. Major efforts have been directed toward achieving selective replication by the deletion of viral functions dispensable in tumor cells or by the regulation of viral genes with tumor-specific promoters. However, the predicted replication selectivity has not been realized because of incomplete knowledge of the complex virus–cell interactions and the leakiness of cellular promoters in the viral genome. Capsid modifications are being developed to achieve tumor targeting and enhance infectivity. Cellular and viral functions that confer greater oncolytic potency are also being elucidated. Ultimately, the interplay of the virus with the immune system will likely dictate the success of this approach as a cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sinkovics, J. & Horvath, J. New developments in the virus therapy of cancer: a historical review. Intervirology 36, 193–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, R.R., Huebner, R.J., Rowe, W.P., Schatten, W.F. & Thomas, L.B. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9, 1211–1218 (1956).

    Article  PubMed  Google Scholar 

  3. Coffey, M.C., Strong, J.E., Forsyth, P.A. & Lee, P.W. Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Haag, A. et al. Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice. Hum. Gene Ther. 11, 597–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Yoon, S.S. et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB. J. 14, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ganly, I. et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res. 6, 798–806 (2000).

    CAS  PubMed  Google Scholar 

  7. Lucher, L.A. Abortive adenovirus infection and host range determinants. Curr. Top. Microbiol. Immunol. 199, 119–152 (1995).

    CAS  PubMed  Google Scholar 

  8. Hay, J.G. et al. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1b-55kD gene. Hum. Gene Ther. 10, 579–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3, 639–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, D.C., Sakamoto, G.T. & Henderson, D.R. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 59, 1498–504 (1999).

    CAS  PubMed  Google Scholar 

  11. Rothmann, T., Hengstermann, A., Whitaker, N.J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol. 72, 9470–9478 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, D. et al. Altered expression of CD44 and variant isoforms in human adenocarcinoma of the endocervix during progression. Gynecol. Oncol. 75, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Goodrum, F.D. & Ornelles, D.A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Babiss, L.E. & Ginsberg, H.S. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J. Virol. 50, 202–212 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pilder, S., Moore, M., Logan, J. & Shenk, T. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol. Cell Biol. 6, 470–476 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harada, J.N. & Berk, A.J. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol. 73, 5333–5344 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall, A.R., Dix, B.R., O'Carroll, S.J. & Braithwaite, A.W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat. Med. 4, 1068–1072 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Wildner, O., Blaese, R.M. & Morris, J.C. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus–thymidine kinase. Cancer Res. 59, 410–413 (1999).

    CAS  PubMed  Google Scholar 

  20. Rogulski, K.R. et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum. Gene Ther. 11, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Fueyo, J. et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19, 2–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H.G., Moran, E. & Yaciuk, P. E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J. Virol. 69, 7917–7924 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hallenbeck, P.L. et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther. 10, 1721–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  25. Babiss, L.E., Friedman, J.M., Darnell, J.E. Jr. Cellular promoters incorporated into the adenovirus genome. Effect of viral DNA replication on endogenous and exogenous gene transcription. J Mol Biol 193, 643–650 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Vassaux, G., Hurst, H.C. & Lemoine, N.R. Insulation of a conditionally expressed transgene in an adenoviral vector. Gene Ther. 6, 1192–1197 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Goldsmith, K.T., Curiel, D.T., Engler, J.A. & Garver, RI Jr. Trans complementation of an E1A-deleted adenovirus with codelivered E1A sequences to make recombinant adenoviral producer cells. Hum. Gene Ther. 5, 1341–1348 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Tollefson, A.E. et al. The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J. Virol. 70, 2296–2306 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, D.C., Chen, Y., Seng, M., Dilley, J. & Henderson, D.R. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 59, 4200–4203 (1999). (Published erratum appears in Cancer Res. 60, 1150, 2000).

    CAS  PubMed  Google Scholar 

  30. Alemany, R. et al. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther. 6, 21–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Motoi, F. et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum. Gene Ther. 11, 223–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Duncan, S.J. et al. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol. 40, 45–61 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Roelvink, P.W., Mi Lee, G., Einfeld, D.A., Kovesdi, I. & Wickham, T.J. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286, 1568–1571 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Gabizon, A. et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992 (1994).

    CAS  PubMed  Google Scholar 

  35. Gu, D.L. et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res. 59, 2608–2614 (1999).

    CAS  PubMed  Google Scholar 

  36. Curiel, D.T. Strategies to adapt adenoviral vectors for targeted delivery. Ann. NY Acad. Sci. 886, 158–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Dmitriev, I. et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J. Virol. 72, 9706–9713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hemmi, S., Geertsen, R., Mezzacasa, A., Peter, I. & Dummer, R. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 9, 2363–2373 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y. et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 59, 325–330 (1999).

    CAS  PubMed  Google Scholar 

  40. Staba, M.J., Wickham, T.J., Kovesdi, I. & Hallahan, D.E. Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther. 7, 13–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Shinoura, N. et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res. 59, 3411–3416 (1999).

    CAS  PubMed  Google Scholar 

  42. Byrnes, A.P. & Griffin, D.E. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J. Virol. 74, 644–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sauthoff, H., Heitner, S., Rom, W.N. & Hay, J.G. Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum. Gene Ther. 11, 379–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Duque, P.M. et al. Antitumoral effect of E1B defective adenoviruses in human malignant cells. Gene Ther. 5, 286–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y. & Schneider, R.J. Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J. Virol. 68, 2544–2555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jain, R.K. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50, 814s–819s (1990).

    CAS  PubMed  Google Scholar 

  47. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat. Med. 5, 881–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Prince, G.A. et al. Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus). J. Virol. 67, 101–111 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Torres, J.M. et al. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus. J. Virol. 70, 3770–3780 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oualikene, W., Gonin, P. & Eloit, M. Short and long term dissemination of deletion mutants of adenovirus in permissive (cotton rat) and non-permissive (mouse) species. J. Gen. Virol. 75, 2765–2768 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Khoobyarian, N., Barone, F., Sabet, T., El-Domeiri, A.A. & Das Gupta, T.K. Inhibition of melanoma growth in hamsters by type-2 adenovirus. J. Surg. Oncol. 7, 421–425 (1975).

    Article  CAS  PubMed  Google Scholar 

  52. Ganly, I., Mautner, V. & Balmain, A. Productive replication of human adenoviruses in mouse epidermal cells. J. Virol. 74, 2895–2899 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, Y., Trinchieri, G. & Wilson, J.M. Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat. Med. 1, 890–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, J.F. et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc. Natl. Acad. Sci. USA 93, 4513–4518 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Freytag, S.O., Rogulski, K.R., Paielli, D.L., Gilbert, J.D. & Kim, J.H. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther. 9, 1323–1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Rancourt, C. et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin. Cancer Res. 5, 43–50 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Paul Reynolds and Kaori Suzuki for critical reading of the manuscript, supported by grants from: United States Department of Defense—PC 970193 and PC991018, Susan Komen Foundation, and National Institutes of Health—RO1 CA83821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alemany, R., Balagué, C. & Curiel, D. Replicative adenoviruses for cancer therapy. Nat Biotechnol 18, 723–727 (2000). https://doi.org/10.1038/77283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing