Abstract
In many instances, permeabilization of mitochondrial membranes is a rate-limiting step of apoptotic or necrotic cell demise. This has important consequences for the pathophysiology of cell death, as well as for its pharmacological control.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642 (1998).
Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).
Gross, A., McDonnell, J.M. & Korsmeyer, S.J. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1988–1911 (1999).
Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: Inhibitors of apoptosis or regulators of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).
Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).
Heiskanen, K.M., Bhat, M.B., Wang, H.W., Ma, J.J. & Nieminen, A.L. Mitochondrial depopolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274, 5654–5658 (1999).
Kwong, J., Choi, H.L., Huang, Y. & Chan, F.L. Ultrastructural and biochemical observations on the early changes in apoptotic epithelial cells of the rat prostate induced by castration. Cell Tissue Res. 298, 123–136 (1999).
Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V. & Di Lisa, F. Mitochondria and cell death — Mechanistic aspects and methodological issues. Eur. J. Biochem. 264, 687–701 (1999).
Lemasters, J.J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–196 (1998).
Jürgensmeier, J.M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997–5002 (1998).
Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).
Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 14681–14686 (1998).
Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).
Pastorino, J.G. et al. Functional consequences of sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 31734–31739 (1999).
Griffiths, G.J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903–914 (1999).
Nomura, M. et al. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res. 59, 5542–5548 (1999).
Khaled, A.R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S.K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96, 14476–14481 (1999).
Puthalalath, G., Huang, D.C.S., O'Reilly, L.A., King, S.M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).
Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).
Wang, H.G. et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of Bad. Science 284, 339–343 (1999).
Yin, X.-M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).
Kirsch, D.G. et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999).
Kharbanda, S. et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-XL in response to DNA damage. J. Biol. Chem. 275, 322–327 (2000).
Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).
Szalai, G., Krischnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349–6361 (1999).
Ruvolo, P.R., Deng, X., Ito, T., Carr, B.K. & May, W.S. Ceramide induces Bcl-2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274, 20296–20300 (1999).
Scorrano, L., Petronilli, V., Di Lisa, F. & Bernardi, P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 22581–22585 (1999).
Wallace, D.C. Mitochondrial diseases in mouse and man. Science 283, 1482–1488 (1999).
Ghafourifar, P., Schenk, U., Klein, S.D. & Richter, C. Mitochondrial nitrix-oxide synthase stimulation causes cytochrome c release from isolated mitochondrai - Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem. 274, 31185–31188 (1999).
Van der Heiden, M., Chandel, N.S., Schumacker, P.T. & Thompson, C.B. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).
Brenner, C. et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329–336 (2000).
Goldmacher, V.S. et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl. Acad. Sci. USA 96, 12536–12541 (1999).
Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 (2000).
Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).
Eskes, R. et al. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217–224 (1998).
Eskes, R., Desagher, S., Antonsson, B. & Martinou, J.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).
Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J. Exp. Med. 187, 1261–1271 (1998).
Andreyev, A. & Fiskum, G. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ. 6, 825–832 (1999).
Susin, S.A. et al. Mitochondrial release of caspases-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381–394 (1999).
Krajewski, S. et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752–5757 (1999).
Budijardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).
Scaffidi, C., Kirchhoff, S., Krammer, P.H. & Peter, M.E. Apoptosis signaling in lymphocytes. Curr. Opin. Immunol. 11, 277–285 (1999).
Patterson, S. et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ. 7, 137–144 (2000).
Khaspekov, L., Friberg, H., Halestrap, A., Viktorov, I. & Wieloch, T. Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. Eur. J. Neurosci. 11, 3194–3198 (1999).
Halestrup, A.P., Kerr, P.M., Javadov, S. & Woodfield, K.-Y. Elucidating the molecular mechanism of the permeability transition and its role in reperfusion injury of the heart. Biochim. Biohys. Acta 1366, 79–94 (1998).
LeDucq, N. et al. Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A. Biochem. J. 336, 501–506 (1998).
Yoshimoto, T. & Siesjo, B.K. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839, 283–291 (1999).
Ferrand Drake, M., Friberg, H. & Wieloch, T. Mitochondrial permeability transition induced DNA-fragmentation in the rat hippocampus following hypoglycemia. Neuroscience 90, 1325–1338 (1999).
Okonkwo, D.O., Buki, A., Siman, R. & Povlishock, J.T. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10, 353–358 (1999).
Holmuhamedov, E.L., Wang, L.W. & Terzic, A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J. Physiol. (London) 519, 347–360 (1999).
Cassarino, D.S., Pars, J.K., Parker, W.D. & Bennett, J.P. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolted mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453, 49–62 (1999).
Berman, S.B. & Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implication for Parkinson's disease. J. Neurochem. 73, 1127–1137 (1999).
Rodrigues, C.M.P. et al. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane permeabilization and channel formation. Cell Death Differ. 6, 842–854 (1999).
Rodrigues, C.M.P., Fan, G.S., Ma, X.M., Kren, B.T. & Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790–2799 (1998).
Tabouy, L. et al. Ursodeoxycholate protects against ethanol-induced liver mitochondrial injury. Life Sci. 63, 2259–2270 (1998).
Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).
Koutnikova, H. et al. Studies of human, mouse, and yeast homologues indicate a mitochondrial function for frataxin. Nature Gen. 16, 345–351 (1997).
Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).
Sawa, A. et al. Increased apoptosis of Huntingon disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198 (1999).
Fontaine, E., Ichas, F. & Bernardi, P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J. Biol. Chem. 273, 25734–25740 (1998).
Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).
Matthews, R.T., Yang, L.C., Browne, S., Baik, M. & Beal, M.F. Coenzyme Q(10) administration increase brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA 95, 8892–8897 (1998).
Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).
Barrath, P., Albert-Fournier, B., Luciakova, K. & Nelson, B.D. Characterization of a silencer element and purification of a silencer protein that negatively regulates the human adenine nucleotide translocator 2 promoter. J. Biol. Chem. 274, 3378–3384 (1999).
Bauer, M.K.A., Schubert, A., Rocks, O. & Grimm, S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J. Cell Biol. 147, 1493–1501 (1999).
Katabi, M.M., Chan, H.L.B., Karp, S. & Batist, G. Hexokinase type II: A novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum. Gene Ther. 10, 155–164 (1999).
Habano, W., Sugai, T., Yoshida, T. & Nakamura, S. Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. Int. J. Cancer 83, 625–629 (1999).
Joshi, B. et al. Apoptosis induction by a novel anti-prostate cancer compound, BMD188 (a fatty acid-containing hydroxamic acid), requires the mitochondrial respiratory chain. Cancer Res. 59, 4343–4355 (1999).
Fulda, S. et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem. 273, 33942–33948 (1998).
Ravagnan, L. et al. Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 18, 2537–2546 (1999).
Marchetti, P. et al. The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res. 54, 6257–6275 (1999).
Carthy, C.M. et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-XL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab. Invest. 79, 953–965 (1999).
Miccoli, L. et al. Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res. 58, 5777–5786 (1998).
Ellerby, H.M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature Med. 5, 1032–1038 (1999).
Holinger, E.P., Chittenden, T. & Lutz, R.J. Bak BH3 peptides antagonize Bcl-XL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274, 13298–13304 (1999).
Cooper, J.M. & Schapira, A.H.V. Mitochondrial dysfunction in neurodegeneration. J. Bioenerg. Biomembr. 29, 175–183 (1997).
Carri, M.T. et al. Expression of Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 414, 365–368 (1997).
Sheehan, J.P. et al. Altered calcium homeostasis in cell transformed by mitochondria from individuals with Parkinson disease. J. Neurochem. 68, 1221–1233 (1997).
Cassarino, D.S., Swerdlow, R.H., Parks, J.K., Parker, W.D. & Bennett, J.P. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids. Biochem. Biophys. Res. Comm. 248, 168–173 (1998).
Guo, Q., Fu, W.M., Holtsberg, F.W., Steiner, S.M. & Mattson, M.P. Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. J. Neurosci. Res. 56, 457–470 (1999).
Passer, B.J., Pellegrini, L., Vito, P., Ganjei, J.K. & D'Adamio, L. Interaction of Alzheimer's presenilin-1 and presenilin-2 with Bcl-XL- A potential role in modulating the threshold of cell death. J. Biol. Chem. 274, 24007–24013 (1999).
Acknowledgements
We thank E. Jacotot for critical reading. This was supported by a special grant from the Ligue Nationale contre le Cancer, as well as by grants from ANRS and FRM (to G.K) and the National Institutes of Health, NIA, the National Cancer Institute and GM (to J.C.R.).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kroemer, G., Reed, J. Mitochondrial control of cell death. Nat Med 6, 513–519 (2000). https://doi.org/10.1038/74994
Issue Date:
DOI: https://doi.org/10.1038/74994
This article is cited by
-
Neuroprotective effect of bromelain on BDNF-TRKB signalling pathway in chronic unpredictable stress-induced depression model
Beni-Suef University Journal of Basic and Applied Sciences (2024)
-
PGAM5 exacerbates acute renal injury by initiating mitochondria-dependent apoptosis by facilitating mitochondrial cytochrome c release
Acta Pharmacologica Sinica (2024)
-
Heat shock protein 70 kDa (HSP70) is involved in the maintenance of pig sperm function throughout liquid storage at 17 °C
Scientific Reports (2024)
-
Alginate nanoparticles containing Lavandula angustifolia essential oil as a potential potent, biocompatible and low-cost antitumor agent
Polymer Bulletin (2024)
-
Caspase-8 activation by cigarette smoke induces pro-inflammatory cell death of human macrophages exposed to lipopolysaccharide
Cell Death & Disease (2023)