Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial control of cell death

Abstract

In many instances, permeabilization of mitochondrial membranes is a rate-limiting step of apoptotic or necrotic cell demise. This has important consequences for the pathophysiology of cell death, as well as for its pharmacological control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial involvement in cell death.
Figure 2: Possible mechanisms for the permeabilization of the mitochondrial inner membrane (IM) or outer membrane (OM).

Similar content being viewed by others

References

  1. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Gross, A., McDonnell, J.M. & Korsmeyer, S.J. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1988–1911 (1999).

    Article  Google Scholar 

  4. Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: Inhibitors of apoptosis or regulators of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Heiskanen, K.M., Bhat, M.B., Wang, H.W., Ma, J.J. & Nieminen, A.L. Mitochondrial depopolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274, 5654–5658 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kwong, J., Choi, H.L., Huang, Y. & Chan, F.L. Ultrastructural and biochemical observations on the early changes in apoptotic epithelial cells of the rat prostate induced by castration. Cell Tissue Res. 298, 123–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V. & Di Lisa, F. Mitochondria and cell death — Mechanistic aspects and methodological issues. Eur. J. Biochem. 264, 687–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lemasters, J.J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Jürgensmeier, J.M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997–5002 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 14681–14686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pastorino, J.G. et al. Functional consequences of sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 31734–31739 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Griffiths, G.J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903–914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nomura, M. et al. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res. 59, 5542–5548 (1999).

    CAS  PubMed  Google Scholar 

  17. Khaled, A.R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S.K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96, 14476–14481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puthalalath, G., Huang, D.C.S., O'Reilly, L.A., King, S.M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  Google Scholar 

  19. Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H.G. et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of Bad. Science 284, 339–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Yin, X.-M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kirsch, D.G. et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kharbanda, S. et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-XL in response to DNA damage. J. Biol. Chem. 275, 322–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szalai, G., Krischnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349–6361 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruvolo, P.R., Deng, X., Ito, T., Carr, B.K. & May, W.S. Ceramide induces Bcl-2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274, 20296–20300 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Scorrano, L., Petronilli, V., Di Lisa, F. & Bernardi, P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 22581–22585 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Wallace, D.C. Mitochondrial diseases in mouse and man. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Ghafourifar, P., Schenk, U., Klein, S.D. & Richter, C. Mitochondrial nitrix-oxide synthase stimulation causes cytochrome c release from isolated mitochondrai - Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem. 274, 31185–31188 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Van der Heiden, M., Chandel, N.S., Schumacker, P.T. & Thompson, C.B. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  Google Scholar 

  31. Brenner, C. et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Goldmacher, V.S. et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl. Acad. Sci. USA 96, 12536–12541 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Eskes, R. et al. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217–224 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J. Exp. Med. 187, 1261–1271 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andreyev, A. & Fiskum, G. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ. 6, 825–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Susin, S.A. et al. Mitochondrial release of caspases-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381–394 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krajewski, S. et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752–5757 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Budijardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    Article  Google Scholar 

  42. Scaffidi, C., Kirchhoff, S., Krammer, P.H. & Peter, M.E. Apoptosis signaling in lymphocytes. Curr. Opin. Immunol. 11, 277–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Patterson, S. et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ. 7, 137–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Khaspekov, L., Friberg, H., Halestrap, A., Viktorov, I. & Wieloch, T. Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. Eur. J. Neurosci. 11, 3194–3198 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Halestrup, A.P., Kerr, P.M., Javadov, S. & Woodfield, K.-Y. Elucidating the molecular mechanism of the permeability transition and its role in reperfusion injury of the heart. Biochim. Biohys. Acta 1366, 79–94 (1998).

    Article  Google Scholar 

  46. LeDucq, N. et al. Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A. Biochem. J. 336, 501–506 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshimoto, T. & Siesjo, B.K. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839, 283–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Ferrand Drake, M., Friberg, H. & Wieloch, T. Mitochondrial permeability transition induced DNA-fragmentation in the rat hippocampus following hypoglycemia. Neuroscience 90, 1325–1338 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Okonkwo, D.O., Buki, A., Siman, R. & Povlishock, J.T. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10, 353–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Holmuhamedov, E.L., Wang, L.W. & Terzic, A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J. Physiol. (London) 519, 347–360 (1999).

    Article  CAS  Google Scholar 

  51. Cassarino, D.S., Pars, J.K., Parker, W.D. & Bennett, J.P. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolted mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453, 49–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Berman, S.B. & Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implication for Parkinson's disease. J. Neurochem. 73, 1127–1137 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Rodrigues, C.M.P. et al. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane permeabilization and channel formation. Cell Death Differ. 6, 842–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Rodrigues, C.M.P., Fan, G.S., Ma, X.M., Kren, B.T. & Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790–2799 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tabouy, L. et al. Ursodeoxycholate protects against ethanol-induced liver mitochondrial injury. Life Sci. 63, 2259–2270 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Koutnikova, H. et al. Studies of human, mouse, and yeast homologues indicate a mitochondrial function for frataxin. Nature Gen. 16, 345–351 (1997).

    Article  CAS  Google Scholar 

  58. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Sawa, A. et al. Increased apoptosis of Huntingon disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Fontaine, E., Ichas, F. & Bernardi, P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J. Biol. Chem. 273, 25734–25740 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Matthews, R.T., Yang, L.C., Browne, S., Baik, M. & Beal, M.F. Coenzyme Q(10) administration increase brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA 95, 8892–8897 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Barrath, P., Albert-Fournier, B., Luciakova, K. & Nelson, B.D. Characterization of a silencer element and purification of a silencer protein that negatively regulates the human adenine nucleotide translocator 2 promoter. J. Biol. Chem. 274, 3378–3384 (1999).

    Article  Google Scholar 

  65. Bauer, M.K.A., Schubert, A., Rocks, O. & Grimm, S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J. Cell Biol. 147, 1493–1501 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Katabi, M.M., Chan, H.L.B., Karp, S. & Batist, G. Hexokinase type II: A novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum. Gene Ther. 10, 155–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Habano, W., Sugai, T., Yoshida, T. & Nakamura, S. Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. Int. J. Cancer 83, 625–629 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Joshi, B. et al. Apoptosis induction by a novel anti-prostate cancer compound, BMD188 (a fatty acid-containing hydroxamic acid), requires the mitochondrial respiratory chain. Cancer Res. 59, 4343–4355 (1999).

    CAS  PubMed  Google Scholar 

  69. Fulda, S. et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem. 273, 33942–33948 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Ravagnan, L. et al. Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 18, 2537–2546 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Marchetti, P. et al. The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res. 54, 6257–6275 (1999).

    Google Scholar 

  72. Carthy, C.M. et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-XL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab. Invest. 79, 953–965 (1999).

    CAS  PubMed  Google Scholar 

  73. Miccoli, L. et al. Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res. 58, 5777–5786 (1998).

    CAS  PubMed  Google Scholar 

  74. Ellerby, H.M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature Med. 5, 1032–1038 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Holinger, E.P., Chittenden, T. & Lutz, R.J. Bak BH3 peptides antagonize Bcl-XL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274, 13298–13304 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Cooper, J.M. & Schapira, A.H.V. Mitochondrial dysfunction in neurodegeneration. J. Bioenerg. Biomembr. 29, 175–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Carri, M.T. et al. Expression of Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 414, 365–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Sheehan, J.P. et al. Altered calcium homeostasis in cell transformed by mitochondria from individuals with Parkinson disease. J. Neurochem. 68, 1221–1233 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Cassarino, D.S., Swerdlow, R.H., Parks, J.K., Parker, W.D. & Bennett, J.P. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids. Biochem. Biophys. Res. Comm. 248, 168–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Guo, Q., Fu, W.M., Holtsberg, F.W., Steiner, S.M. & Mattson, M.P. Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. J. Neurosci. Res. 56, 457–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Passer, B.J., Pellegrini, L., Vito, P., Ganjei, J.K. & D'Adamio, L. Interaction of Alzheimer's presenilin-1 and presenilin-2 with Bcl-XL- A potential role in modulating the threshold of cell death. J. Biol. Chem. 274, 24007–24013 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Jacotot for critical reading. This was supported by a special grant from the Ligue Nationale contre le Cancer, as well as by grants from ANRS and FRM (to G.K) and the National Institutes of Health, NIA, the National Cancer Institute and GM (to J.C.R.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroemer, G., Reed, J. Mitochondrial control of cell death. Nat Med 6, 513–519 (2000). https://doi.org/10.1038/74994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/74994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing