Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene expression database for the molecular pharmacology of cancer

Abstract

We used cDNA microarrays to assess gene expression profiles in 60 human cancer cell lines used in a drug discovery screen by the National Cancer Institute. Using these data, we linked bioinformatics and chemoinformatics by correlating gene expression and drug activity patterns in the NCI60 lines. Clustering the cell lines on the basis of gene expression yielded relationships very different from those obtained by clustering the cell lines on the basis of their response to drugs. Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exemplify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resistance. This is the first study to integrate large databases on gene expression and molecular pharmacology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic overview of database generation in relation to the NCI drug discovery program.
Figure 2: Dendrograms showing average-linkage hierarchical clustering of human cancer cell lines.
Figure 3: Dendrograms showing average-linkage hierarchical clustering of 118 ‘mechanism of action’ drugs.
Figure 4: CIM relating activity patterns of 118 tested compounds to the expression patterns of 1,376 genes in the 60 cell lines.
Figure 5: Relationship between ASNS expression levels and chemosensitivity of the NCI cell lines to L-asparaginase.

Similar content being viewed by others

References

  1. Boyd, M.R. & Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res. 34, 91– 109 (1995).

    Article  CAS  Google Scholar 

  2. Alley, M.C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988).

    CAS  PubMed  Google Scholar 

  3. Monks, A. et al. Feasibility of a high flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl Cancer Inst. 83, 757–766 (1991).

    Article  CAS  Google Scholar 

  4. Grever, M.R., Schepartz, S.A. & Chabner, B.A. The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 19, 622–638 (1992).

    CAS  PubMed  Google Scholar 

  5. Stinson, S.F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992).

    CAS  PubMed  Google Scholar 

  6. Boyd, M.R. in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (ed. Teicher, B.A.) 23–42 (Humana Press, Totowa, 1997).

    Book  Google Scholar 

  7. Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227– 235 (2000).

    Article  CAS  Google Scholar 

  8. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343– 349 (1997).

    Article  CAS  Google Scholar 

  9. Weinstein, J.N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447– 451 (1992).

    Article  CAS  Google Scholar 

  10. van Osdol, W.W., Myers, T.G., Paull, K.D., Kohn, K.W. & Weinstein, J.N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 ( 1994).

    Article  CAS  Google Scholar 

  11. Paull, K.D., Hamel, E. & Malspeis, L. Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. in Cancer Chemotherapeutic Agents (ed. Foye, W.E.) 1574– 1581 (American Chemical Soc. Books, Washington, DC, 1993).

    Google Scholar 

  12. Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088 –1092 (1989).

    Article  CAS  Google Scholar 

  13. Shi, L.M., Fan, Y., Myers, T.G., Paull, K.D. & Weinstein, J.N. Mining the NCI anticancer drug discovery databases: genetic function approximation for the quantitative structure-activity relationship study of anticancer ellipticine analogs. J. Chem. Inf. Comput. Sci. 38, 189–199 ( 1998).

    Article  CAS  Google Scholar 

  14. Shi, L.M. et al. Mining the National Cancer Institute's anticancer drug screen database: cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol. Pharmacol. 53, 241–251 (1998).

    Article  CAS  Google Scholar 

  15. Alvarez, M. et al. Generation of a drug resistance profile by quantitation of MDR-1/P-glycoprotein expression in the cell lines of the NCI anticancer drug screen. J. Clin. Invest. 95, 2205– 2214 (1995).

    Article  CAS  Google Scholar 

  16. Izquierdo, M.A. et al. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int. J. Cancer 65, 230–237 (1996).

    Article  CAS  Google Scholar 

  17. O'Connor, P.M. et al. Characterization of the p53-tumor suppressor pathway in cells of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–4300 ( 1997).

    CAS  PubMed  Google Scholar 

  18. Freije, J.M. et al. Identification of compounds with preferential inhibitory activity against low-Nm23-expressing human breast carcinoma and melanoma cell lines . Nature Med. 3, 395–401 (1997).

    Article  CAS  Google Scholar 

  19. Koo, H.-M. et al. Enhanced sensitivity to 1-β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. J. Natl Cancer Inst. 56, 5211 –5216 (1996).

    CAS  Google Scholar 

  20. Wosikowski, K. et al. Identification of epidermal growth factor receptor and c-erbB2 pathway inhibitors by correlation with gene expression patterns. J. Natl Cancer Inst. 89, 1505–1513 (1997).

    Article  CAS  Google Scholar 

  21. Bates, S.E. et al. Reversal of multidrug resistance. Prog. Clin. Biol. Res. 389, 33–37 ( 1994).

    CAS  PubMed  Google Scholar 

  22. Bates, S.E. et al. Molecular targets in the National Cancer Institute drug screen . J. Cancer Res. Clin. Oncol. 121, 495– 500 (1995).

    Article  CAS  Google Scholar 

  23. Lee, J.-S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994).

    CAS  PubMed  Google Scholar 

  24. Wu, L. et al. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res . 52, 3029–3034 ( 1992).

    CAS  PubMed  Google Scholar 

  25. Kitada, S. et al. Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines. Am. J. Pathol . 152, 51–61 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Monks, A., Scudiero, D.A., Johnson, G.S., Paull, K.D. & Sausville, E.A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 ( 1997).

    CAS  PubMed  Google Scholar 

  27. Weinstein, J.N. Fishing expeditions. Science 282, 627 (1998).

    Article  Google Scholar 

  28. Myers, T.G. et al. A protein expression database for the molecular pharmacology of cancer. Electrophoresis 18, 647– 653 (1997).

    Article  CAS  Google Scholar 

  29. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

    Article  CAS  Google Scholar 

  30. Schena, M. et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  Google Scholar 

  31. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  Google Scholar 

  32. Scudiero, D.A., Monks, A. & Sausville, E.A. Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J. Natl Cancer Inst. 90, 862 (1998).

  33. Capranico, G. et al. Mapping drug interactions at the covalent topoisomerase II-DNA complex by bisantrene/amsacrine congeners. J. Biol. Chem. 273, 12732–12739 (1998).

    Article  CAS  Google Scholar 

  34. Chen, A.Y. & Liu, L.F. DNA topoisomerases: essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol. 94, 194–218 (1994).

    Google Scholar 

  35. Pommier, Y., Tanizawa, A. & Kohn, K.W. Mechanism of topoisomerase I inhibition by anticancer drugs. Adv. Pharmacol. 29B, 73– 92 (1993).

    Google Scholar 

  36. Shao, R.-G. et al. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes . EMBO J. (in press).

  37. Pommier, Y. DNA topoisomease II inhibitors. in Cancer Therapeutics: Experimental and Clinical Agents (ed. Teicher, B.A.) 153–174 (Humana Press, Totowa, 1997).

    Book  Google Scholar 

  38. Weinstein, J.N. et al. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute's drug discovery program for cancer and AIDS. Stem Cells 12, 13–22 ( 1994).

    Article  CAS  Google Scholar 

  39. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  CAS  Google Scholar 

  40. Fischel, J.L. et al. Dihydropyrimidine dehydrogenase: a tumoral target for fluorouracil modulation. Clin. Cancer Res. 1, 991– 996 (1995).

    CAS  PubMed  Google Scholar 

  41. McLeod, H.L. et al. Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours. Br. J. Cancer 77, 461 –465 (1998).

    Article  CAS  Google Scholar 

  42. Cooney, D.A. & Handschumacher, R.E. L-asparaginase and L-asparagine metabolism. Annu. Rev. Pharmacol. 10, 421 –440 (1970).

    Article  CAS  Google Scholar 

  43. Capizzi, R.L., Bertino, J.R. & Handschumacher, R.E. L-Asparaginase. Annu. Rev. Med. 21, 433–444 (1970).

    Article  CAS  Google Scholar 

  44. Efron, B. & Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Statistician 37, 36–48 (1983).

    Google Scholar 

  45. Wada, H. et al. Antitumor enzyme: polyethylene glycol-modified asparaginase. Ann. NY Acad. Sci. 613, 95–108 (1990).

    Article  CAS  Google Scholar 

  46. Tanabe, L. et al. MedMiner: an internet tool for mining the biomedical literature, with application to gene expression profiling. Biotechniques 27, 1210–1217 (1999).

    Article  CAS  Google Scholar 

  47. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21 (suppl.), 33–37 (1999 ).

    Article  CAS  Google Scholar 

  48. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the NCI DTP, particularly K.D. Paull, whose efforts over the years have resulted in the pharmacological databases used in this study. This study was supported in part by NCI grant CA77097 and by the Howard Hughes Medical Institute. D.T.R. is a Walter and Iden Berry Fellow. P.O.B. is an associate investigator of the Howard Hughes Medical Institute. The work of U.S. and J.N.W. was supported in part by a grant from the NCI intramural Breast Cancer Think Tank.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick O. Brown or John N. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherf, U., Ross, D., Waltham, M. et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet 24, 236–244 (2000). https://doi.org/10.1038/73439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing