Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles

Abstract

Here, to study lipid–protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constituents from plasma-membrane constituents, and the induction of synaptic-vesicle curvature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoactivatable lipids: [3H]photocholesterol and [3H]photophosphatidylcholine.
Figure 2: Characterization of photocholesterol interactions with proteins and lipids.
Figure 3: Photoaffinity labelling of MDCK cells with photoactivatable lipids reveals specific binding of photocholesterol to caveolin/VIP21 in vivo .
Figure 4: Photoaffinity labelling of PC12 clone 251 and clone 27 cells.
Figure 5: Identification of photocholesterol-labelled proteins of PC12 clone 251 cells.
Figure 6: Specific cholesterol binding to synaptophysin in SLMVs/synaptic vesicles and their donor membranes.
Figure 7: The effect of cholesterol depletion and replenishment on PC12 cell SLMVs.
Figure 8: Cholesterol–synaptophysin interaction and the biogenesis of SLMVs.

Similar content being viewed by others

References

  1. Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488–495 (1997).

    Article  CAS  Google Scholar 

  2. Brown, D. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  3. Simons, K. & Ikonen, E. Functional rafts in cell membranes . Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  4. Thiele, C. & Huttner, W. B. Protein and lipid sorting from the trans-Golgi network to secretory granules — recent developments . Semin. Cell Dev. Biol. 9, 511– 516 (1998).

    Article  CAS  Google Scholar 

  5. Nickel, W., Bruegger, B. & Wieland, F. T. Protein and lipid sorting between the endoplasmatic reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9, 493–502 (1998).

    Article  CAS  Google Scholar 

  6. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533– 544 (1992).

    Article  CAS  Google Scholar 

  7. Radhakrishnan, R. et al. Phospholipids containing photoactivable groups in studies of biological membranes. Ann. NY Acad. Sci. 346, 165–198 (1980).

    Article  CAS  Google Scholar 

  8. Stoffel, W., Salm, K.-P. & Mueller, M. Syntheses of phosphatidylcholines, sphingomyelins and cholesterol substituted with azido fatty acids. Hoppe-Seylers Z. Physiol. Chem. 363, 1–18 (1982).

    Article  CAS  Google Scholar 

  9. Stoffel, W. & Metz, P. Covalent cross-linking of photosensitive phospholipids to human serum high density apolipoproteins (apoHDL). Hoppe-Seylers Z. Biol. Chem. 360, 197– 206 (1979).

    Article  CAS  Google Scholar 

  10. Westerman, J. et al. Identification of the lipid binding site of phosphatidylcholine-transfer protein with phosphatidylcholine analogs containing photoactivable carbene precursors. Eur. J. Biochem. 132, 441– 449 (1983).

    Article  CAS  Google Scholar 

  11. Pryde, J. G. & Phillips, J. H. Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Biochem. J. 233, 525–533 ( 1986).

    Article  CAS  Google Scholar 

  12. Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118, 1003–1014 (1992).

    Article  CAS  Google Scholar 

  13. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339– 10343 (1995).

    Article  CAS  Google Scholar 

  14. Ikonen, E. Molecular mechanisms of intracellular cholesterol transport. Curr. Opin. Lipidol. 8, 60–64 (1997).

    Article  CAS  Google Scholar 

  15. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660– 669 (1995).

    Article  CAS  Google Scholar 

  16. Tooze, S. A. & Huttner, W. B. Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60, 837–847 (1990).

    Article  CAS  Google Scholar 

  17. Clift-O’Grady, L., Linstedt, A. D., Lowe, A. W., Grote, E. & Kelly, R. B. Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line. J. Cell Biol. 110, 1693–1703 (1990).

    Article  Google Scholar 

  18. Corradi, N. et al. Overall lack of regulated secretion in a PC12 variant cell clone. J. Biol. Chem. 271, 27116– 27124 (1996).

    Article  CAS  Google Scholar 

  19. Finbow, M. E. & Harrison, M. A. The vacuolar H-ATPase: a universal proton pump. Biochem. J. 324, 697– 712 (1997).

    Article  CAS  Google Scholar 

  20. Jahn, R. & Südhof, T. C. Synaptic vesicles and exocytosis . Annu. Rev. Neurosci. 17, 219– 246 (1994).

    Article  CAS  Google Scholar 

  21. Bauerfeind, R., Jelinek, R. & Huttner, W. B. Synaptotagmin I- and II-deficient PC12 cells exhibit calcium-independent, depolarization-induced neurotransmitter release from synaptic-like microvesicles. FEBS Lett. 364, 328–334 (1995).

    Article  CAS  Google Scholar 

  22. Schmidt, A., Hannah, M. J. & Huttner, W. B. Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. J. Cell Biol. 137 , 445–458 (1997).

    Article  CAS  Google Scholar 

  23. Lichtenstein, Y., Desnos, C., Fàundez, V., Kelly, R. B. & Clift-O’Grady, C. Vesiculation and sorting from PC12-derived endosomes in vitro. Proc. Natl Acad. Sci. USA 95, 11223–11228 ( 1998).

    Article  CAS  Google Scholar 

  24. Schmidt, A. & Huttner, W. B. Biogenesis of synaptic-like microvesicles in perforated PC12 cells. Methods: Companion to Methods Enzymol. 16, 160–169 ( 1998).

    Article  CAS  Google Scholar 

  25. Trowbridge, I. S., Collawn, J. F. & Hopkins, C. R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9, 129–161 (1993).

    Article  CAS  Google Scholar 

  26. Evans, W. H. & Hardison, W. G. Phospholipid, cholesterol, polypeptide and glycoprotein composition of hepatic endosome subfractions. Biochem. J. 232, 33–36 ( 1985).

    Article  CAS  Google Scholar 

  27. Breckenridge, W. C., Morgan, I. G., Zanetta, J. P. & Vincendon, G. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320, 681–686 (1973).

    Article  CAS  Google Scholar 

  28. Perez-Castineira, J. R. & Apps, D. K. Vacuolar H(+)-ATPase of adrenal secretory granules. Rapid partial purification and reconstitution into proteoliposomes. Biochem. J. 271, 127 –131 (1990).

    Article  CAS  Google Scholar 

  29. Thomas, L. et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 1050–1053 (1988).

    Article  CAS  Google Scholar 

  30. Monier, S. et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6, 911–927 (1995).

    Article  CAS  Google Scholar 

  31. Rodal, S. K. et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974 ( 1999).

    Article  CAS  Google Scholar 

  32. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding . Proc. Natl Acad. Sci. USA 96, 6775– 6780 (1999).

    Article  CAS  Google Scholar 

  33. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    Article  CAS  Google Scholar 

  34. Ledesma, M. D., Simons, K. & Dotti, C. G. Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA 95, 3966–3971 (1998).

    Article  CAS  Google Scholar 

  35. Hannah, M. J., Weiss, U. & Huttner, W. B. Differential extraction of proteins from paraformaldehyde-fixed cells: lessons from synaptophysin and other membrane proteins. Methods: Companion to Methods Enzymol. 16, 170– 181 (1998).

    Article  CAS  Google Scholar 

  36. Brand, S. H. & Castle, J. D. SCAMP 37, a new marker within the general cell surface recycling system. EMBO J. 12, 3753–3761 (1993).

    Article  CAS  Google Scholar 

  37. Wu, T. T. & Castle, J. D. Evidence for colocalization and interaction between 37 and 39 kDa isoforms of secretory carrier membrane proteins (SCAMPs). J. Cell Sci. 110, 1533– 1541 (1997).

    CAS  PubMed  Google Scholar 

  38. Molday, R. S., Hicks, D. & Molday, L. Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest. Ophthalmol. Vis. Sci. 28, 50–61 (1987).

    CAS  PubMed  Google Scholar 

  39. Goldberg, A. F. & Molday, R. S. Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35, 6144–6149 (1996).

    Article  CAS  Google Scholar 

  40. Church, R. F. R. & Weiss, M. J. Diazirines. II. Synthesis and properties of small functionalized diazirine molecules. Some observations on the reaction of a diaziridine with the iodine-iodide ion system . J. Org. Chem. 35, 2465– 2471 (1970).

    Article  CAS  Google Scholar 

  41. Spector, A. A. & Hoak, J. C. An improved method for the addition of long-chain free fatty acid to protein solutions. Anal. Biochem. 32, 297–302 (1969).

    Article  CAS  Google Scholar 

  42. Beisswanger, R. et al. Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc. Natl Acad. Sci. USA 95, 11134– 11139 (1998).

    Article  CAS  Google Scholar 

  43. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).

    Article  CAS  Google Scholar 

  44. Baumert, M., Maycox, P.R., Navone, F., De Camilli, P. & Jahn, R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8, 379–384 ( 1989).

    Article  CAS  Google Scholar 

  45. Heumann, R., Kachel, V. & Thoenen, H. Relationship between NGF-mediated volume increase and “priming effect” in fast and slow reacting clones of PC12 pheochromocytoma cells. Exp. Cell Res. 145, 179– 190 (1983).

    Article  CAS  Google Scholar 

  46. Pimplikar, S., Ikonen, E. & Simons, K. Basolateral protein transport in streptolysin O-permeabilized MDCK cells. J. Cell Biol. 125, 1025– 1035 (1994).

    Article  CAS  Google Scholar 

  47. Zacchetti, D., Peränen, J., Murata, M., Fiedler, K. & Simons, K. VIP17-MAL, a proteolipid in apical transport vesicles. FEBS Lett. 377, 465– 469 (1995).

    Article  CAS  Google Scholar 

  48. Klein, U., Gimpl, G. & Fahrenholz, F. Alteration of the myometrial plasma membrane cholesterol content with beta cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784– 13793 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bosserhoff and R. Frank for mass spectrometry of V-ATPase c; K. Burger for help with photocholesterol synthesis; R. Sandhoff and F. Wieland for mass spectrometry of photocholesterol; A. Schmidt for advice on analysis of PC12 cell SLMVs; and P. Rosa and J. Meldolesi for PC12 clone 27 cells. This work was supported by grants from the DFG (SFB 317, C2 to W.B.H.; SFB 474 to F.F.), the EC (ERB-FMRX-CT96-0023 and ERBBIO4CT960058 to W.B.H.) and the FCI (to W.B.H.).

Correspondence and requests for materials should be addressed to C.T. or W.B.H.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Thiele or Wieland B. Huttner.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, C., Hannah, M., Fahrenholz, F. et al. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2, 42–49 (2000). https://doi.org/10.1038/71366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing