Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cofilin promotes rapid actin filament turnover in vivo

Abstract

The ability of actin filaments to function in cell morphogenesis and motility is coupled to their capacity for rapid assembly and disassembly. Because disassembly in vitro is much slower than in vivo, cellular factors that stimulate disassembly have long been assumed to exist. Although numerous proteins can affect actin dynamics in vitro, demonstration of in vivo relevance of these effects has not been achieved. We have used genetics and an actin-inhibitor in yeast to demonstrate that rapid cycles of actin assembly and disassembly depend on the small actin-binding protein cofilin, and that cofilin stimulates filament disassembly. These results may explain why cofilin is ubiquitous in eukaryotes and is essential for viability in every organism in which its function has been tested genetically. Magnitudes of disassembly defects in cofilin mutants in vivo were found to be correlated closely with the magnitudes of disassembly defects observed in vitro, supporting our conclusions. Furthermore, these cofilin mutants provided an opportunity to distinguish in living cells those actin functions that depend specifically on filament turnover (endocytosis) from those that do not (cortical actin patch motility).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cells were grown at 20 °C to A600 = 0.3, shifted to 34 °C for 3 h and fixed with 5% formaldehyde.
Figure 2: Filamentous actin was visualized by rhodamine–phalloidin staining in wild-type (ac), cof1–5 (df) and cof1–22 (gi) strains at 0, 2 and 10 min after the addition of 400 µM Lat-A to the cultures at 25 °C.
Figure 3: The effects of cofilin mutations on actin-filament depolymerization in vivo and in vitro.
Figure 4: Effects of cofilin mutants on endocytosis and actin patch movement.

Similar content being viewed by others

References

  1. Moon, A. & Drubin, D. G. The ADF-cofilin proteins: Stimulus responsive modulators of actin dynamics. Mol. Biol. Cell 6, 1423–1431 (1995).

    Article  CAS  Google Scholar 

  2. Bamburg, J. R., Harris, H. E. & Weeds, A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 121, 178–182 (1990).

    Article  Google Scholar 

  3. Yonezawa, N., Nishida, E. & Sakai, H. pH control of actin polymerization by cofilin. J. Biol. Chem. 260, 14410–14412 (1985).

    CAS  PubMed  Google Scholar 

  4. Hawkins, M., Pope, B., Maciver, S. K. & Weeds, A. G. Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32, 9985–9993 (1993).

    Article  CAS  Google Scholar 

  5. Hayden, S. M., Miller, P. S., Brauweiler, A. & Bamburg, J. R. Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32, 9994–10004 (1993).

    Article  CAS  Google Scholar 

  6. Moon, A. L., Janmey, P. A., Louie, K. A. & Drubin, D. G. Cofilin is an essential component of the yeast cortical cytoskeleton. J. Cell Biol. 120, 421–435 (1993).

    Article  CAS  Google Scholar 

  7. Gunsalus, K. C. et al. Mutations in twinstar, a Drosophila gene encoding a cofilin-ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol. 131, 1243–1259 (1995).

    Article  CAS  Google Scholar 

  8. McKim, K. S., Matheson, C., Marra, M. A., Wakarchuk, M. F. & Baillie, D. L. The Caenorhabditis elegans unc-60 gene encodes protein homologous to a family of actin binding proteins. Mol. Gen. Genet. 242, 346–357 (1994).

    Article  CAS  Google Scholar 

  9. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).

    Article  CAS  Google Scholar 

  10. Coue, M., Brenner, S. L., Spector, I. & Korn, E. D. Inhibition of actin polymerization by Latranculin-A. FEBS Lett. 213, 316–318 (1987).

    Article  CAS  Google Scholar 

  11. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor Latranculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  12. Holtzman, D. A., Yang, S. & Drubin, D. G. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122, 635–644 (1993).

    Article  CAS  Google Scholar 

  13. Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993).

    Article  CAS  Google Scholar 

  14. Freeman, N. L., Chen, Z., Horenstein, J., Weber, A. & Field, J. An actin monomer binding activity localizes to the carboxyl half of the Saccharomyces cerevisiae cyclase associated protein. J. Biol. Chem. 270, 5680–5685 (1995).

    Article  CAS  Google Scholar 

  15. Geli, M. I. & Riezman, H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Goodson, H. V. et al. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5)—Myosin I proteins are required for polarization of the actin cytoskeleton. J. Cell Biol. 133, 1277–1291 (1996).

    Article  CAS  Google Scholar 

  17. Benedetti, H., Raths, S., Crauzas, F. & Riezman, H. The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin ctyoskeleton organization in yeast. Mol. Biol. Cell 5, 1023–1037 (1994).

    Article  CAS  Google Scholar 

  18. Waddle, J. A., Karpova, T. S., Waterston, R. H. & Cooper, J. A. Movement of cortical actin patches in yeast. J. Cell Biol. 132, 861–870 (1996).

    Article  CAS  Google Scholar 

  19. Doyle, T. & Botstein, D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl Acad. Sci. USA 93, 3886–3891 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Welch, M. D., Mallavarapu, A., Rosenblatt, J. & Mitchison, T. J. Actin dynamics in vivo. Opin. Cell Biol. 9, 54–61 (1997).

    Article  CAS  Google Scholar 

  21. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin XAC is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323–1332 (1997).

    Article  CAS  Google Scholar 

  22. Carlier, M. et al. Actin depolymerizing factor (ADF/cofilin) uses ATP hydrolysis to enhance actin dynamics. J. Cell Biol. 136, 1307–1322 (1997).

    Article  CAS  Google Scholar 

  23. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. & Sakai, H. Inhibition of the interactions of cofilin, destrin and deoxyribonuclease-I with actin by phosphoinositides. J. Biol. Chem. 265, 8382–8386 (1990).

    CAS  PubMed  Google Scholar 

  24. Agnew, B. J., Minamide, L. S. & Bamburg, J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582–17585 (1995).

    Article  CAS  Google Scholar 

  25. Abe, H., Obinata, T., Minamide, L. S. & Bamburg, J. R. Xenopus laevis actin-depolymerizing factor/cofilin: A phosphorylation-regulated protein essential for development. J. Cell Biol. 132, 871–885 (1996).

    Article  CAS  Google Scholar 

  26. Adams, A. E. M., Botstein, D. & Drubin, D. G. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 354, 404–408 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Lila, T. & Drubin, D. G. Evidence for physical and functional interactions among two Saccharyomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8, 367–385 (1997).

    Article  CAS  Google Scholar 

  28. Dulic, V. et al. Yeast endocytosis assays. Methods Enzymol. 194, 697–710 (1991).

    Article  CAS  Google Scholar 

  29. Ausubel, F. M. et al. Current Protocols in Molecular Biology(John Wiley, New York, (1990)).

    Google Scholar 

  30. Buzan, J. M. & Frieden, C. Yeast actin: Polymerization kinetic studies of wild-type and a poorly polymerizing mutant. Proc. Natl Acad. Sci. USA 93, 91–95 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ayscough for the Lat-A disassembly procedure; L. Belmont, B. Goode and K. Kozminski for comments on the manuscript; and A. Mallavarapu and T. Mitchison for help in recording patch movements. This work was supported by long-term fellowships from the European Molecular Biology Organization and Human Frontier Science Program (to P.L.) and by grants from the NIH and American Cancer Society (to D.G.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Drubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappalainen, P., Drubin, D. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82 (1997). https://doi.org/10.1038/40418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing