Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcription factor GATA-3 is required for development of the T-cell lineage

Abstract

THE zinc-finger transcription factor GATA-3 is expressed in haematopoietic cells and in the developing kidney and nervous system1–7. Within the haematopoietic lineages, expression of GATA-3 is restricted to thymocytes and T cells. Functionally important GATA-3 binding sites have been identified in multiple T-cell-specific genes1,6–8. Mice containing homozygous null mutations of the GATA-3 gene die on embryonic day 12, precluding a detailed assessment of the role of GATA-3 in haematopoietic development9. Here we have used murine embryonic stem (ES) cells containing homozygous mutations in the GATA-3 gene (GATA-3−/− ) in conjunction with the RAG-2−/− (ref. 10) and C57BL/6 complementation systems to study the role of GATA-3 in mammalian haematopoiesis. Our results show that GATA-3−/− ES cells can contribute to the development of the mature ery-throid, myelomonocytic and B-cell lineages, but fail to give rise to thymocytes or mature peripheral T cells. The differentiation of GATA-3−/−T cells is blocked at or before the earliest double-negative (CD4/CD8) stage of thymocyte development, such that the GATA-3−/− ES cells are unable to contribute measurably to the double-negative thymocyte population. These findings suggest that GATA-3 is an essential and specific regulator of early thymocyte development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ho, I.-C. et al. EMBO J. 10, 1187–1192 (1991).

    Article  CAS  Google Scholar 

  2. Oosterwegel, M., Timmerman, J., Leiden, J. & Clevers, H. Dev. Immunol. 3, 1–11 (1992).

    Article  CAS  Google Scholar 

  3. George, K. M. et al. Development 120, 2673–2686 (1994).

    CAS  PubMed  Google Scholar 

  4. Labastie, M. C. et al. Genomics 21, 1–6 (1994).

    Article  CAS  Google Scholar 

  5. Labastie, M. C., Catala, M., Gregoire, J. M. & Peault, B. Kidney Int. 47, 1597–1603 (1995).

    Article  CAS  Google Scholar 

  6. Ko, L. J. et al. Mol. Cell. Biol. 5, 2778–2784 (1991).

    Article  Google Scholar 

  7. Marine, J. & Winoto, A. Proc. Natl Acad. Sci. USA 88, 7284–7288 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hambor, J. E., Mennone, J., Coon, M. E., Hanke, J. H. & Kavathas, P. Mol. Cell. Biol. 13, 7056–7070 (1993).

    Article  CAS  Google Scholar 

  9. Pandolfi, P. et al. Nature Genet. 11, 40–44 (1995).

    Article  CAS  Google Scholar 

  10. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Shinkai, Y. et al. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  12. Godfrey, D. I., Kennedy, J., Mombaerts, P., Tonegawa, S. & Zlotnik, A. J. Immunol. 152, 4783–4792 (1994).

    CAS  PubMed  Google Scholar 

  13. Padua, R. A., Bulfield, G. & Peters, J. Biochem. Genet. 16, 127–143 (1978).

    Article  CAS  Google Scholar 

  14. Clevers, H. & Grosschedl, R. Immunol. Today 17, 336–343 (1996).

    Article  CAS  Google Scholar 

  15. Leiden, J. M. Annu. Rev. Immunol. 11, 539–570 (1993).

    Article  CAS  Google Scholar 

  16. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Science 265, 1573–1577 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Olson, M. et al. Immunity 3, 703–714 (1995).

    Article  CAS  Google Scholar 

  18. Georgopoulos, K. et al. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  19. Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  20. Shivdasani, R. A., Mayer, E. L. & Orkin, S. H. Nature 373, 432–434 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Tsai, F.-Y. et al. Nature 371, 221–226 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Mucenski, M. L. et al. Cell 65, 677–689 (1991).

    Article  CAS  Google Scholar 

  23. Verbeek, S. et al. Nature 374, 70–74 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Bories, J.-C. et al. Nature 377, 635–638 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Muthusamy, N., Barton, K. & Leiden, J. M. Nature 377, 639–642 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Redondo, J., Hata, S., Brocklehurst, C. & Krangel, M. Science 247, 1225–1229 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Mombaerts, P. et al. Nature 360, 225–231 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Shinkai, Y. et al. Science 259, 822–825 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Alt, F. W. et al. Immunol. Today 13, 306–314 (1992).

    Article  CAS  Google Scholar 

  30. Tybulewicz, V. L., Crawford, C. E. Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, CN., Olson, M., Barton, K. et al. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996). https://doi.org/10.1038/384474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384474a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing