Abstract
NEOCORTICAL neurons display a wide range of dendritic morphologies, ranging from compact arborizations to highly elaborate branching patterns1. In vitro electrical recordings from these neurons have revealed a correspondingly diverse range of intrinsic firing patterns, including non-adapting, adapting and bursting types2,3. This heterogeneity of electrical responsivity has generally been attributed to variability in the types and densities of ionic channels. We show here, using compartmental models of reconstructed cortical neurons, that an entire spectrum of firing patterns can be reproduced in a set of neurons that share a common distribution of ion channels and differ only in their dendritic geometry. The essential behaviour of the model depends on partial electrical coupling of fast active conductances localized to the soma and axon and slow active currents located throughout the dendrites, and can be reproduced in a two-compartment model. The results suggest a causal relationship for the observed correlations between dendritic structure and firing properties3–7 and emphasize the importance of active dendritic conductances in neuronal function8–10.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Peters, A. & Jones, E. G. Cerebral Cortex Vol 1: Cellular Components of the Cerebral Cortex (Plenum, New York, 1984).
McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. J. Neurophysiol. 54, 782–806 (1985).
Connors, B. W. & Gutnick, M. J. Trends Neurosci. 13, 99–104 (1990).
Chagnac-Amitai, Y., Luhmann, H. J. & Prince, D. A. J. comp. Neurol. 296, 598–613 (1990).
Mason, A. & Larkman, A. U. J. Neurosci. 10, 1415–1428 (1990).
Franceschetti, S., Guatteo, E., Panzica, F., Sancini, G. E. W. & Avanzini, G. Brain Res. 696, 127–139 (1995).
Yang, C. R., Seamans, J. K. & Gorelova, N. J. Neurosci. 16, 1904–1921 (1996).
Mainen, Z. F., Joerges, J., Huguenard J. R. & Sejnowski, T. J. Neuron 15, 1427–1439 (1995).
Yuste, R. & Tank, D. W. Neuron 16, 701–716 (1996).
Rapp, M., Yarom, Y. & Segev, I. Proc. natn. Acad. Sci. U.S.A. (in the press).
Stuart, G. J. & Sakmann, B. Nature 367, 69–72 (1994).
Wollner, D. A. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 83, 8424–8428 (1986).
Angelides, K. J., Elmer, L. W., Loftus, D. & Elson, E. J. Cell Biol. 106, 1911–1924 (1988).
Schwindt, P. C. et al. J. Neurophysiol. 59, 424–449 (1988).
Storm, J. F. Prog. Brain Res. 83, 161–187 (1990).
Kim, H. G. & Connors, B. W. J. Neurosci. 13, 5301–5311 (1993).
Yuste, R., Gutnick, M. J., Saar, D., Delaney, R. D. & Tank, D. W. Neuron 13, 23–43 (1994).
Pinsky, P. F. & Rinzel, J. J. comput. Neurosci. 1, 39–60 (1994).
Turner, R. W., Maler, L., Deerinck, T., Levinson, S. R. & Ellisman, M. H. J. Neurosci. 14, 6453–6471 (1994).
Azouz, R., Jensen, M. S. & Yaari, Y. J. Physiol. 492, 211–223 (1996).
Granit, R., Kernell, D. & Smith, R. S. J. Physiol. 168, 100–115 (1963).
Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).
Larkman, A. U., Major, G., Stratford, K. J. & Jack, J. J. B. J. comp. Neurol. 323, 137–152 (1992).
Kasper, E. M., Larkman, A. U., Lubke, J. & Blakemore, C. J. comp. Neurol. 339, 475–494 (1994).
Agmon, A. & Connors, B. W. J. Neurosci. 12, 319–329 (1993).
Hines, M. In Neural Systems: Analysis and Modeling (ed. Eeckman, F. H.) 127–136 (Kluwer, Boston, MA, 1993).
Hamill, O. P., Huguenard, J. R. & Prince, D. A. Cerebral Cortex 1, 48–61 (1991).
Gutfreund, Y., Yarom, Y. & Segev, I. J. Physiol. 483, 621–640 (1995).
Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. J. J. Neurosci. 13, 4609–4621 (1993).
Sloper, J. J. & Powell, T. P. S. Phil. Trans. R. Soc. Lond. B285, 173–197 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mainen, Z., Sejnowski, T. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996). https://doi.org/10.1038/382363a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/382363a0
This article is cited by
-
Induced neural phase precession through exogenous electric fields
Nature Communications (2024)
-
Single-neuron analysis of dendrites and axons reveals the network organization in mouse prefrontal cortex
Nature Neuroscience (2023)
-
Brain-wide dendrites in a near-optimal performance of dynamic range and information transmission
Scientific Reports (2023)
-
Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair
Communications Biology (2023)
-
Increased intrinsic and synaptic excitability of hypothalamic POMC neurons underlies chronic stress-induced behavioral deficits
Molecular Psychiatry (2023)