Abstract
The chaperonin GroEL is able to mediate protein folding in its central cavity. GroEL-bound dihydrofolate reductase assumes its native conformation when the GroES cofactor caps one end of the GroEL cylinder, thereby discharging the unfolded polypeptide into an enclosed cage. Folded dihydrofolate reductase emerges upon ATP-dependent GroES release. Other proteins, such as rhodanese, may leave GroEL after having attained a conformation that is committed to fold. Incompletely folded polypeptide rebinds to GroEL, resulting in structural rearrangement for another folding trial in the chaperonin cavity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).
Hendrick, J. P. & Hartl, F. U. A. Rev. Biochem. 62, 349–384 (1993).
Ellis, R. J. Opin. struct. Biol. 4, 117–122 (1994).
Landry, S. J. & Gierasch, L. M. A. Rev. Biophys. biomol. Struct. 23, 645–669 (1994).
Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F. U. EMBO J. 11, 4757–4765 (1992).
Creighton, T. E. Nature 352, 17–18 (1991).
Braig, K., Simon, M., Furuya, F., Hainfeld, J. F. & Horwich, A. L. Proc. natn. Acad. Sci. U.S.A. 90, 3978–3982 (1993).
Chen, S. et al. Nature 371, 261–264 (1994).
Martin, J. et al. Nature 352, 36–42 (1991).
Hayer-Hartl, M. K., Ewbank, J. J., Creighton, T. E. & Hartl, F. U. EMBO J. 13, 3192–3202 (1994).
Zahn, R., Spitzfaden, C., Ottiger, M., Wuthrich, K. & Pluckthun, A. Nature 368, 261–265 (1994).
Robinson, C. V. et al. Nature 372, 646–651 (1994).
Braig, K. et al. Nature 371, 578–586 (1994).
Fenton, W. A., Kashi, Y., Furtak, K. & Horwich, A. L. Nature 371, 615–619 (1994).
Saibil, H., Dong, Z., Wood, S. & auf der Mauer, A. Nature 353, 25–26 (1991).
Engel, A. et al. Science 269, 832–836 (1995).
Hayer-Hartl, M. K., Martin, J. & Hartl, F. U. Science 269, 836–841 (1995).
Martin, J., Mayhew, M., Langer, T. & Hartl, F. U. Nature 366, 228–233 (1993).
Todd, M. J., Viitanen, P. V. & Lorimer, G. H. Science 265, 659–666 (1994).
Burston, S. G., Ranson, N. A. & Clarke, A. R. J. molec. Biol. 249, 138–152 (1995).
Hendrick, J. P. & Hartl, F. U. FASEB J. 9, 1559–1569 (1995).
Bochkareva, E. S. & Girshovich, A. S. J. biol. Chem. 269, 23869–23871 (1994).
Gray, T. E. & Fersht, A. R. FEBS Lett. 292, 254–258 (1991).
Weissman, J. S., Kashi, Y., Fenton, W. A. & Horwich, A. L. Cell 78, 693–702 (1994).
Saibil, H. R. et al. Curr. Biol. 3, 265–273 (1993).
Gray, T. E. & Fersht, A. R. J. molec. Biol. 232, 1197–1207 (1993).
Corrales, F. J. & Fersht, A. R. Proc. natn. Acad. Sci. U.S.A. 92, 5326–5330 (1995).
Ranson, N. A., Dunster, N. J., Burston, S. G. & Clarke, A. R. J. molec. Biol. 250, 581–586 (1995).
Touchette, N., Perry, K. & Matthews, C. R. Biochemistry 25, 5445–5452 (1986).
Frieden, C. Proc. natn. Acad. Sci. U.S.A. 87, 4413–4416 (1990).
Ostermann, J., Horwich, A. L., Neupert, W. & Hartl, F. U. Nature 341, 125–130 (1989).
Rassow, J. et al. Molec. cell. Biol. 15, 2654–2662 (1995).
Hummel, J. P. & Dryer, W. J. Biochim. biophys. Acta 63, 530–532 (1962).
Jackson, G. S. et al. Biochemistry 32, 2554–2563 (1993).
Creighton, T. E. Biochem. J. 270, 1–16 (1990).
Dobson, C. M., Evans, P. A. & Radford, S. E. Trends biochem. Sci. 19, 31–37 (1994).
Horowitz, P. M. & Criscimagna, N. L. J. biol. Chem. 265, 2576–2583 (1990).
Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. & Furtak, K. Cell 74, 909–917 (1993).
Hartl, F. U. Nature 371, 557–559 (1994).
Landry, S. J., Zeilstra, R. J., Fayet, O., Georgopoulos, C. & Gierasch, L. M. Nature 364, 255–258 (1993).
Zimmerman, S. B. & Trach, S. O. J. molec. Biol. 222, 599–620 (1991).
Higuchi, R. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 177–183 (Academic, San Diego, CA, 1990).
Pratt, J. M. In Transcription and Translation: A practical approach (eds Harnes, B. D. & Higgins, S. J.) 179–210 (IRL, Oxford, 1984).
Lissin, N. M., Venyaminov, S. & Girshovich, A. S. Nature 348, 339–342 (1990).
Schägger, M. & von Jagow, G. Analyt. Biochem. 166, 368–379 (1987).
Tempst, P., Geromanos, S., Elicone, C. & Erdjument-Bromage, H. Metnods: A Companion to Methods in Enzymology 6, 248–261 (1994).
Hlodan, R., Tempst, P. & Hartl, F. U. Nature struct. Biol. 2, 587–595 (1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mayhew, M., da Silva, A., Martin, J. et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420–426 (1996). https://doi.org/10.1038/379420a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/379420a0
This article is cited by
-
Bioinspired crowding directs supramolecular polymerisation
Nature Communications (2023)
-
Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery
Nature Communications (2022)
-
A general approach to protein folding using thermostable exoshells
Nature Communications (2021)
-
Heat shock proteins with an emphasis on HSP 60
Molecular Biology Reports (2021)
-
The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B1
BMC Microbiology (2019)