Abstract
THE role of the cytoskeleton during viral infection is poorly understood. Here we show, using a combination of mutant and drug studies, that the intracellular enveloped form of vaccinia virus is capable of inducing the formation of actin tails that are strikingly similar to those seen in Listeria, Shigella and Rickettsia infections. Analysis using video microscopy reveals that single viral particles are propelled in vivo on the tip of actin tails, at a speed of 2.8 um min–1. On contact with the cell surface, virus particles extend outwards on actin projections at a similar rate, to contact and infect neighbouring cells. Given the similarities between the motility of vaccinia virus and bacterial pathogens, we suggest that intra-cellular pathogens have developed a common mechanism to exploit the actin cytoskeleton as a means to facilitate their direct spread between cells.
Similar content being viewed by others
Article PDF
References
Goebel, S. J. et al. Virology 179, 247–266 (1990).
Moss, B. in Virology (eds Fields, B. N. et al.) 2079–2111 (Raven, New York, 1990).
Payne, L. G. J. gen. Virol. 50, 89–100 (1980).
Schmelz, M. et al. J. Virol. 68, 130–147 (1994).
Morgan, C. Virology 73, 43–58 (1976).
Stokes, G. V. J. Virol. 18, 636–643 (1976).
Hiller, G., Weber, K., Schneider, L., Parajsz, C. & Jungwirth, C. Virology 98, 142–153 (1979).
Hiller, G. & Weber, K. J. Virol. 44, 647–657 (1982).
Hiller, G., Jungwirth, C. & Weber, K. Expl Cell Res. 132, 81–87 (1981).
Krempien, U. et al. Virology 113, 556–564 (1981).
Pollard, T. D. Curr. Biol. 5, 837–840 (1995).
Cossart, P. Curr. Opin. Cell Biol. 7, 94–101 (1995).
Tilney, L. G. & Portnoy, D. A. J. Cell Biol. 109, 1597–1608 (1989).
Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstead, T. Infect. Immun. 61, 1926–1935 (1993).
Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Proc. natn. Acad. Sci. U.S.A. 86, 3867–3871 (1989).
Blasco, R. & Moss, B. J. Virol. 66, 4170–4179 (1992).
Hiller, G., Eibl, H. & Weber, K. J. Virol. 39, 903–913 (1981).
Kato, N., Eggers, H. J. & Roily, H. J. exp. Med. 129, 795–808 (1969).
Payne, L. G. & Kristenson, K. J. Virol. 32, 614–622 (1979).
Schmutz, C., Payne, L. G., Gubser, J. & Wittek, R. J. Virol. 65, 3435–3442 (1991).
Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Proc. natn. Acad. Sci. U.S.A. 87, 6068–6072 (1990).
Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. Nature 357, 257–260 (1992).
Payne, L. G. & Kristensson, K. Archs Virol. 74, 11–20 (1982).
Kocks, C. et al. Cell 68, 521–531 (1992).
Gouin, E., Dehoux, P., Mengaud, J., Kocks, C. & Cossart, P. Infect. Immun. 63, 2729–2737 (1995).
Domann, E. et al. EMBO J. 11, 1981–1990 (1992).
Blasco, R., Cole, N. B. & Moss, B. J. Virol. 65, 4598–4608 (1991).
Marchand, J.-B. et al. J. Cell Biol. 130, 1–13 (1995).
Herzog, M., Draeger, A., Ehler, E. & Small, J. V. Cell Biology: A Laboratory Handbook (Academic, San Diego, 1994).
Rodriguez, J. F., Janeczko, R. & Esteban, M. J. Virol. 56, 482–488 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cudmore, S., Cossart, P., Griffiths, G. et al. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995). https://doi.org/10.1038/378636a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/378636a0
This article is cited by
-
Mpox (formerly monkeypox): pathogenesis, prevention, and treatment
Signal Transduction and Targeted Therapy (2023)
-
Viral and host heterogeneity and their effects on the viral life cycle
Nature Reviews Microbiology (2021)
-
Vaccinia virus hijacks EGFR signalling to enhance virus spread through rapid and directed infected cell motility
Nature Microbiology (2018)
-
Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus
Archives of Virology (2017)
-
Host cytoskeleton in respiratory syncytial virus assembly and budding
Virology Journal (2016)