Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different β-subunits determine G-protein interaction with transmembrane receptors

Abstract

REGULATORY GTP-binding proteins (G proteins) are membrane-attached heterotrimers (α, β, γ) that mediate cellular responses to a wide variety of extracellular stimuli1,2. They undergo a cycle of guanine-nucleotide exchange and GTP hydrolysis, during which they dissociate into αsubunit and βγ complex1. The roles of G-protein αsubunits in these processes and for the specificity of signal transduction are largely established; the α- and γ-subunits are essential for receptor-induced G-protein activation and seem to be less diverse and less specific. Although the complementary DNAs for several β-subunits have been cloned2,5–8, isolated sub-units have only been studied as βγ complexes3,9–12. Functional differences have been ascribed to the γ-subunit on the basis of extensive sequence similarity among β-subunits and apparent heterogeneity in γ-subunit sequences13,14.βγ complexes can interact directly or indirectly with different effectors10,11,15–20. They seem to be interchangeable in their interaction with pertussis toxinsensitive α-subunits3, so we tested this by microinjecting antisense oligonucleotides into nuclei of a rat pituitary cell line to suppress the synthesis of individual β-subunits selectively. Here we show that two out of four subtypes of β-subunits tested (β1 and β3) are selectively involved in the signal transduction cascades from muscarinic M4 (ref. 4) and somatostatin receptors, respectively, to voltage-dependent Ca2+ channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Birnbaumer, L., Abramowitz, J. & Brown, A. M. Biochim. biophys. Acta 1031, 163–224 (1990).

    Article  CAS  Google Scholar 

  2. Simon, M. I., Strathmann, M. P. & Gautam, N. Science 252, 802–808 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Hekman, M. et al. Eur. J. Biochem. 169, 431–439 (1987).

    Article  CAS  Google Scholar 

  4. Pinkas-Kramarski, R., Edelman, R. & Stein, R. Neurosci. Lett. 108, 335–340 (1990).

    Article  CAS  Google Scholar 

  5. Codina, J., Stengel, D., Woo, S. L. C. & Birnbaumer, L. FEBS Lett. 207, 187–192 (1986).

    Article  CAS  Google Scholar 

  6. Gao, B., Gilman, A. G. & Robishaw, J. D. Proc. natn. Acad. Sci. U.S.A. 84, 6122–6125 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Levine, M. A., Smallwood, P. M., Moen, P. T. Jr, Helman, L. J. & Ahn, T. G. Proc. natn. Acad. Sci. U.S.A. 87, 2329–2333 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Von Weizsäcker, E., Strathmann, M. P. & Simon, M. I. Biochem. biophys. res. Commun. 183, 350–356 (1992).

    Article  Google Scholar 

  9. Simonds, W. F., Butrynski, J. E., Gautam, N., Unson, C. G. & Spiegel, A. M. J. biol. Chem. 266, 5363–5366 (1991).

    CAS  PubMed  Google Scholar 

  10. Cerione, R. A. et al. Biochemistry 26, 1485–1491 (1987).

    Article  CAS  Google Scholar 

  11. Fawzi, A. B. et al. J. biol. Chem. 266, 12194–12200 (1991).

    CAS  PubMed  Google Scholar 

  12. Kanaho, Y. et al. J. biol. Chem. 259, 7378–7381 (1984).

    CAS  PubMed  Google Scholar 

  13. Tamir, H., Fawzi, A. B., Tamir, A., Evans, T. & Northup, J. K. Biochemistry 30, 3929–3936 (1991).

    Article  CAS  Google Scholar 

  14. Fisher, K. J. & Aronson, N. N. Jr Molec. cell. Biology 12, 1585–1591 (1992).

    Article  CAS  Google Scholar 

  15. Katada, T., Kusakabe, K., Oinuma, M. & Ui, M. J. biol. Chem. 262, 11897–11900 (1987).

    CAS  PubMed  Google Scholar 

  16. Jelsema, C. L. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 84, 3623–3627 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. Nature 325, 321–326 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Okabe, K. et al. J. biol. Chem. 265, 12854–12858 (1990).

    CAS  PubMed  Google Scholar 

  19. Kim, D. et al. Nature 337, 557–560 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Boyer, J. L. J. biol. Chem. 264, 13917–13922 (1989).

    CAS  PubMed  Google Scholar 

  21. Kleuss, C. et al. Nature 353, 43–48 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Law, S. F., Manning, D. & Reisine, T. J. biol. Chem. 266, 17885–17897 (1991).

    CAS  PubMed  Google Scholar 

  23. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleuss, C., Scherübl, H., Hescheler, J. et al. Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358, 424–426 (1992). https://doi.org/10.1038/358424a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358424a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing